Spaces:
Running
Running
zwxl
commited on
Commit
·
daf4e8e
1
Parent(s):
125d85c
- app.py +42 -4
- requirements.txt +9 -0
- viitor_voice/inference/common.py +90 -0
- viitor_voice/inference/transformers_engine.py +64 -0
app.py
CHANGED
@@ -1,7 +1,45 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
demo = gr.Interface(fn=greet, inputs="text", outputs="text")
|
7 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import sys
|
3 |
+
from viitor_voice.inference.transformers_engine import TransformersEngine
|
4 |
+
import spaces
|
5 |
|
6 |
+
if __name__ == '__main__':
|
7 |
+
# Initialize your OfflineInference class with the appropriate paths
|
8 |
+
offline_inference = TransformersEngine("ZzWater/viitor-voice-mix")
|
9 |
+
|
10 |
+
|
11 |
+
@spaces.GPU
|
12 |
+
def clone_batch(text_list, prompt_audio, prompt_text):
|
13 |
+
print(prompt_audio.name)
|
14 |
+
try:
|
15 |
+
audios = offline_inference.batch_infer(
|
16 |
+
text_list=[text_list],
|
17 |
+
prompt_audio_path=prompt_audio.name, # Use uploaded file's path
|
18 |
+
prompt_text=prompt_text,
|
19 |
+
)
|
20 |
+
return 24000, audios[0].cpu().numpy()[0].astype('float32')
|
21 |
+
except Exception as e:
|
22 |
+
return str(e)
|
23 |
+
|
24 |
+
|
25 |
+
with gr.Blocks() as demo:
|
26 |
+
gr.Markdown("# TTS Inference Interface")
|
27 |
+
with gr.Tab("Batch Clone"):
|
28 |
+
gr.Markdown("### Batch Clone TTS")
|
29 |
+
|
30 |
+
text_list_clone = gr.Textbox(label="Input Text List (Comma-Separated)",
|
31 |
+
placeholder="Enter text1, text2, text3...")
|
32 |
+
prompt_audio = gr.File(label="Upload Prompt Audio")
|
33 |
+
prompt_text = gr.Textbox(label="Prompt Text", placeholder="Enter the prompt text")
|
34 |
+
|
35 |
+
clone_button = gr.Button("Run Batch Clone")
|
36 |
+
clone_output = gr.Audio(label="Generated Audios", type="numpy")
|
37 |
+
|
38 |
+
clone_button.click(
|
39 |
+
fn=clone_batch,
|
40 |
+
inputs=[text_list_clone, prompt_audio, prompt_text],
|
41 |
+
outputs=clone_output
|
42 |
+
)
|
43 |
+
|
44 |
+
demo.launch()
|
45 |
|
|
|
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
requests
|
2 |
+
accelerate==1.1.1
|
3 |
+
datasets==3.1.0
|
4 |
+
transformers
|
5 |
+
tokenizers
|
6 |
+
snac
|
7 |
+
torch==2.4.0
|
8 |
+
torchaudio==2.4.0
|
9 |
+
soundfile
|
viitor_voice/inference/common.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
from io import BytesIO
|
4 |
+
from urllib.parse import urlparse
|
5 |
+
import requests
|
6 |
+
import torchaudio
|
7 |
+
|
8 |
+
|
9 |
+
def load_audio(source):
|
10 |
+
def is_url(path):
|
11 |
+
try:
|
12 |
+
result = urlparse(path)
|
13 |
+
return all([result.scheme, result.netloc])
|
14 |
+
except Exception:
|
15 |
+
return False
|
16 |
+
|
17 |
+
if is_url(source):
|
18 |
+
# 从 URL 加载音频
|
19 |
+
response = requests.get(source)
|
20 |
+
response.raise_for_status() # 检查请求状态
|
21 |
+
audio_data = BytesIO(response.content) # 转为类文件对象
|
22 |
+
else:
|
23 |
+
# 从本地文件加载音频
|
24 |
+
if not os.path.exists(source):
|
25 |
+
raise FileNotFoundError(f"File not found: {source}")
|
26 |
+
audio_data = source # 本地路径可以直接传递给 torchaudio.load
|
27 |
+
|
28 |
+
# 使用 torchaudio 加载音频
|
29 |
+
waveform, sample_rate = torchaudio.load(audio_data)
|
30 |
+
return waveform, sample_rate
|
31 |
+
|
32 |
+
|
33 |
+
pattern = re.compile(r"<\|speech-(\d+)\|>")
|
34 |
+
|
35 |
+
|
36 |
+
def combine_sequences(first_elements, second_elements, third_elements):
|
37 |
+
group_size = 7
|
38 |
+
sequence = []
|
39 |
+
|
40 |
+
second_index = 0
|
41 |
+
third_index = 0
|
42 |
+
|
43 |
+
for first in first_elements:
|
44 |
+
group = [None] * group_size
|
45 |
+
|
46 |
+
# Assign the first element
|
47 |
+
group[0] = first
|
48 |
+
|
49 |
+
# Assign the second and fifth elements if they exist
|
50 |
+
if second_index < len(second_elements):
|
51 |
+
group[1] = second_elements[second_index]
|
52 |
+
second_index += 1
|
53 |
+
if second_index < len(second_elements):
|
54 |
+
group[4] = second_elements[second_index]
|
55 |
+
second_index += 1
|
56 |
+
|
57 |
+
# Assign the remaining elements from third_elements if they exist
|
58 |
+
for j in [2, 3, 5, 6]:
|
59 |
+
if third_index < len(third_elements):
|
60 |
+
group[j] = third_elements[third_index]
|
61 |
+
third_index += 1
|
62 |
+
|
63 |
+
# Remove None values at the end of the group if the group is incomplete
|
64 |
+
sequence.extend([x for x in group if x is not None])
|
65 |
+
|
66 |
+
return sequence
|
67 |
+
|
68 |
+
|
69 |
+
def split_sequence(sequence):
|
70 |
+
group_size = 7
|
71 |
+
first_elements = []
|
72 |
+
second_elements = []
|
73 |
+
third_elements = []
|
74 |
+
|
75 |
+
# Iterate over the sequence in chunks of 7
|
76 |
+
for i in range(0, len(sequence), group_size):
|
77 |
+
group = sequence[i:i + group_size]
|
78 |
+
|
79 |
+
# Add elements to the respective lists based on their position in the group
|
80 |
+
if len(group) >= 1:
|
81 |
+
first_elements.append(group[0])
|
82 |
+
if len(group) >= 5:
|
83 |
+
second_elements.extend([group[1], group[4]])
|
84 |
+
if len(group) >= 7:
|
85 |
+
third_elements.extend([group[2], group[3], group[5], group[6]])
|
86 |
+
else:
|
87 |
+
third_elements.extend(group[2:])
|
88 |
+
|
89 |
+
return first_elements, second_elements, third_elements
|
90 |
+
|
viitor_voice/inference/transformers_engine.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
import torchaudio
|
4 |
+
from snac import SNAC
|
5 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
6 |
+
from viitor_voice.inference.common import combine_sequences, load_audio, pattern, split_sequence
|
7 |
+
|
8 |
+
|
9 |
+
class TransformersEngine:
|
10 |
+
def __init__(self, model_path, device='cuda'):
|
11 |
+
self.device = device
|
12 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
|
13 |
+
self.model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.bfloat16).to(device)
|
14 |
+
self.snac_model = SNAC.from_pretrained('hubertsiuzdak/snac_24khz').eval().to(device)
|
15 |
+
|
16 |
+
def batch_infer(self, text_list, prompt_audio_path, prompt_text, flattened_snac_encode=None):
|
17 |
+
if flattened_snac_encode is None:
|
18 |
+
prompt_audio, sr = load_audio(prompt_audio_path)
|
19 |
+
if sr != 24000:
|
20 |
+
prompt_audio = torchaudio.functional.resample(prompt_audio, sr, 24000)
|
21 |
+
|
22 |
+
snac_encode = self.snac_model.encode(prompt_audio[None,].to(self.device))
|
23 |
+
first_elements, second_elements, third_elements = \
|
24 |
+
snac_encode[0].cpu().numpy().tolist(), snac_encode[1].cpu().numpy().tolist(), snac_encode[
|
25 |
+
2].cpu().numpy().tolist()
|
26 |
+
flattened_snac_encode = combine_sequences(first_elements[0], second_elements[0], third_elements[0])
|
27 |
+
prompt_snac_texts = ''.join(
|
28 |
+
['<|speech-{}|>'.format(i) if j % 7 != 0 else '<|SEP_AUDIO|><|speech-{}|>'.format(i) for
|
29 |
+
j, i in
|
30 |
+
enumerate(flattened_snac_encode)])
|
31 |
+
|
32 |
+
prompts = [
|
33 |
+
'<|START_TEXT|>' + prompt_text + x + '<|END_TEXT|>' + '<|START_AUDIO|>' + prompt_snac_texts + '<|SEP_AUDIO|>'
|
34 |
+
for x in text_list]
|
35 |
+
prompt_ids_list = self.tokenizer(prompts, add_special_tokens=False).input_ids
|
36 |
+
results = []
|
37 |
+
for prompt_ids in prompt_ids_list:
|
38 |
+
prompt_ids = torch.tensor([prompt_ids], dtype=torch.int64).to(self.device)
|
39 |
+
output_ids = self.model.generate(prompt_ids, eos_token_id=156008, no_repeat_ngram_size=0, num_beams=1,
|
40 |
+
do_sample=False, repetition_penalty=1.3,
|
41 |
+
suppress_tokens=list(range(151641)))
|
42 |
+
output_ids = output_ids[0, prompt_ids.shape[-1]:].cpu().numpy().tolist()
|
43 |
+
generated_text = self.tokenizer.batch_decode([output_ids], skip_special_tokens=False)
|
44 |
+
snac_tokens = pattern.findall(generated_text)
|
45 |
+
snac_tokens = [int(x) for x in snac_tokens]
|
46 |
+
results.append(snac_tokens)
|
47 |
+
audios = self.batch_decode_audios(results)
|
48 |
+
return audios
|
49 |
+
|
50 |
+
def batch_decode_audios(self, snac_tokens_list):
|
51 |
+
audios = []
|
52 |
+
with torch.no_grad():
|
53 |
+
for snac_tokens in snac_tokens_list:
|
54 |
+
try:
|
55 |
+
first_elements, second_elements, third_elements = split_sequence(snac_tokens)
|
56 |
+
codes = [torch.from_numpy(np.array(x).astype(np.int32)[None,]).to(self.device) for x in
|
57 |
+
[first_elements, second_elements, third_elements]]
|
58 |
+
audio_hat_all = self.snac_model.decode(codes)[0].cpu()
|
59 |
+
audios.append(audio_hat_all.to(torch.float32))
|
60 |
+
except:
|
61 |
+
audios.append('error')
|
62 |
+
print('error')
|
63 |
+
return audios
|
64 |
+
|