File size: 5,017 Bytes
37d5f61
d2c5913
37d5f61
b04e932
37d5f61
6154159
d2c5913
 
 
b04e932
d2c5913
124754e
d2c5913
43c0b68
b04e932
 
 
 
 
d2c5913
 
6154159
 
 
 
 
 
 
 
 
 
 
 
 
 
d2c5913
 
 
 
2a89186
 
 
a068a3a
2a89186
 
 
6154159
 
 
 
 
 
 
 
 
 
 
 
d2c5913
 
b04e932
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2c5913
 
 
 
 
 
 
 
43c0b68
 
 
d2c5913
 
 
 
 
 
 
b04e932
 
 
 
43c0b68
 
 
d2c5913
6154159
 
 
 
 
 
 
 
 
 
 
 
d2c5913
124754e
8de1ee6
 
 
 
 
 
 
 
 
124754e
 
b04e932
 
 
 
 
 
 
 
 
 
f03edeb
b04e932
f03edeb
124754e
 
b04e932
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
124754e
 
b04e932
 
 
 
 
4660782
 
 
124754e
 
 
d2c5913
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import asyncio
import streamlit as st
import pandas as pd
from typing import Optional, List, Set, Tuple, Dict, Any

from .components.filters import render_table_filters
from .components.visualizations import (
    render_leaderboard_table,
    render_performance_plots,
    render_device_rankings,
)
from .components.header import render_header, render_contribution_guide
from .services.firebase import fetch_leaderboard_data
from .core.styles import CUSTOM_CSS
from .core.scoring import (
    calculate_performance_score,
    get_performance_metrics,
    StandardBenchmarkConditions,
)


def get_filter_values(
    df: pd.DataFrame,
) -> tuple[
    List[str],
    List[str],
    List[str],
    List[str],
    List[str],
    Tuple[int, int],
    Tuple[int, int],
    Tuple[int, int],
    List[str],
    int,
]:
    """Get unique values for filters"""
    models = sorted(df["Model ID"].unique().tolist())
    platforms = sorted(df["Platform"].unique().tolist())
    devices = sorted(df["Device"].unique().tolist())
    cache_type_v = sorted(df["cache_type_v"].unique().tolist())
    cache_type_k = sorted(df["cache_type_k"].unique().tolist())
    n_threads = (df["n_threads"].min(), df["n_threads"].max())
    max_n_gpu_layers = (0, max(df["n_gpu_layers"].unique().tolist()))
    pp_range = (df["PP Config"].min(), df["PP Config"].max())
    tg_range = (df["TG Config"].min(), df["TG Config"].max())
    versions = sorted(df["Version"].unique().tolist())
    return (
        models,
        platforms,
        devices,
        cache_type_v,
        cache_type_k,
        pp_range,
        tg_range,
        n_threads,
        versions,
        max_n_gpu_layers,
    )


def render_performance_metrics(metrics: Dict[str, Any]):
    """Render performance metrics in a nice grid"""
    st.markdown("### πŸ† Performance Overview")

    col1, col2, col3, col4, col5 = st.columns(5)

    with col1:
        st.metric("Top Device", metrics["top_device"])
    with col2:
        st.metric("Top Score", f"{metrics['top_score']:.1f}")
    with col3:
        st.metric("Average Score", f"{metrics['avg_score']:.1f}")
    with col4:
        st.metric("Total Devices", metrics["total_devices"])
    with col5:
        st.metric("Total Models", metrics["total_models"])


async def main():
    """Main application entry point"""
    st.set_page_config(
        page_title="AI Phone Benchmark Leaderboard",
        page_icon="πŸ“±",
        layout="wide",
    )

    # Apply custom styles
    st.markdown(CUSTOM_CSS, unsafe_allow_html=True)

    # Fetch initial data
    df = await fetch_leaderboard_data()

    if df.empty:
        st.error("No data available. Please check your connection and try again.")
        return

    # Calculate performance scores
    df = calculate_performance_score(df)
    metrics = get_performance_metrics(df)

    # Render header
    render_header()

    # Get unique values for filters
    (
        models,
        platforms,
        devices,
        cache_type_v,
        cache_type_k,
        pp_range,
        tg_range,
        n_threads,
        versions,
        max_n_gpu_layers,
    ) = get_filter_values(df)

    # Create main layout with sidebar for contribution guide
    if "show_guide" not in st.session_state:
        st.session_state.show_guide = True

    main_col, guide_col = st.columns(
        [
            0.9 if not st.session_state.show_guide else 0.8,
            0.1 if not st.session_state.show_guide else 0.2,
        ]
    )

    with main_col:
        # Create tabs for different views
        tab1, tab2 = st.tabs(["Device Rankings", "Benchmark Results"])

        with tab1:
            # Device rankings view
            st.title("πŸ† Device Rankings")

            # Show standardization notice
            std = StandardBenchmarkConditions()
            st.info(
                f"πŸ“Š Rankings are based on benchmarks with standard conditions: "
                f"PP={std.PP_CONFIG} tokens, TG={std.TG_CONFIG} tokens. "
                f"Scores factor in model size and quantization."
            )

            # Render performance metrics
            render_performance_metrics(metrics)

            # Render device rankings
            render_device_rankings(df)

        with tab2:
            # Original benchmark view
            table_filters = render_table_filters(
                models,
                platforms,
                devices,
                cache_type_v,
                cache_type_k,
                pp_range,
                tg_range,
                n_threads,
                versions,
                max_n_gpu_layers,
            )

            # Render the main leaderboard table
            render_leaderboard_table(df, table_filters)

            # Render plot section
            st.markdown("---")

            # Render performance plots with table filters
            render_performance_plots(df, table_filters)

    with guide_col:
        render_contribution_guide()


if __name__ == "__main__":
    asyncio.run(main())