Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
4 |
+
from tensorflow.keras.models import load_model
|
5 |
+
|
6 |
+
# Load the saved model
|
7 |
+
model = load_model('emotion_classifier_model.h5')
|
8 |
+
|
9 |
+
# Load the tokenizer (You need to save the tokenizer too)
|
10 |
+
import pickle
|
11 |
+
with open('tokenizer.pickle', 'rb') as handle:
|
12 |
+
tokenizer = pickle.load(handle)
|
13 |
+
|
14 |
+
# Define parameters for padding
|
15 |
+
max_length = 200
|
16 |
+
padding_type = 'post'
|
17 |
+
trunc_type = 'post'
|
18 |
+
|
19 |
+
# Define a function to predict emotions for a list of comments
|
20 |
+
def predict_emotions(comments):
|
21 |
+
# Convert input text to sequences
|
22 |
+
sequences = tokenizer.texts_to_sequences(comments)
|
23 |
+
padded_sequences = pad_sequences(sequences, maxlen=max_length, padding=padding_type, truncating=trunc_type)
|
24 |
+
|
25 |
+
# Predict emotions
|
26 |
+
predictions = model.predict(padded_sequences)
|
27 |
+
|
28 |
+
# List of emotion labels
|
29 |
+
emotion_labels = ['admiration', 'amusement', 'anger', 'annoyance', 'approval', 'caring', 'confusion', 'curiosity',
|
30 |
+
'desire', 'disappointment', 'disapproval', 'disgust', 'embarrassment', 'excitement', 'fear',
|
31 |
+
'gratitude', 'grief', 'joy', 'love', 'nervousness', 'neutral', 'optimism', 'pride', 'realization',
|
32 |
+
'relief', 'remorse', 'sadness', 'surprise']
|
33 |
+
|
34 |
+
# Generate human-readable predictions
|
35 |
+
result = []
|
36 |
+
for prediction in predictions:
|
37 |
+
emotion_dict = {emotion: prob for emotion, prob in zip(emotion_labels, prediction)}
|
38 |
+
result.append(emotion_dict)
|
39 |
+
|
40 |
+
return result
|
41 |
+
|
42 |
+
# Create the Gradio interface
|
43 |
+
interface = gr.Interface(
|
44 |
+
fn=predict_emotions,
|
45 |
+
inputs=gr.inputs.Textbox(label="Input Comment", lines=2, placeholder="Enter your comment here...", type="text", default="This is a wonderful day!"),
|
46 |
+
outputs=gr.outputs.Label(num_top_classes=3),
|
47 |
+
title="Reddit Emotion Classifier",
|
48 |
+
description="Select one or more testing comments and predict their emotion labels."
|
49 |
+
)
|
50 |
+
|
51 |
+
# Launch the app
|
52 |
+
interface.launch()
|