Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,12 +2,12 @@ import gradio as gr
|
|
2 |
import numpy as np
|
3 |
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
4 |
from tensorflow.keras.models import load_model
|
|
|
5 |
|
6 |
# Load the saved model
|
7 |
model = load_model('emotion_classifier_model.h5')
|
8 |
|
9 |
# Load the tokenizer (You need to save the tokenizer too)
|
10 |
-
import pickle
|
11 |
with open('tokenizer.pickle', 'rb') as handle:
|
12 |
tokenizer = pickle.load(handle)
|
13 |
|
@@ -35,17 +35,19 @@ def predict_emotions(comments):
|
|
35 |
result = []
|
36 |
for prediction in predictions:
|
37 |
emotion_dict = {emotion: prob for emotion, prob in zip(emotion_labels, prediction)}
|
38 |
-
|
|
|
|
|
39 |
|
40 |
return result
|
41 |
|
42 |
# Create the Gradio interface
|
43 |
interface = gr.Interface(
|
44 |
fn=predict_emotions,
|
45 |
-
inputs=gr.
|
46 |
-
outputs=gr.
|
47 |
title="Reddit Emotion Classifier",
|
48 |
-
description="
|
49 |
)
|
50 |
|
51 |
# Launch the app
|
|
|
2 |
import numpy as np
|
3 |
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
4 |
from tensorflow.keras.models import load_model
|
5 |
+
import pickle
|
6 |
|
7 |
# Load the saved model
|
8 |
model = load_model('emotion_classifier_model.h5')
|
9 |
|
10 |
# Load the tokenizer (You need to save the tokenizer too)
|
|
|
11 |
with open('tokenizer.pickle', 'rb') as handle:
|
12 |
tokenizer = pickle.load(handle)
|
13 |
|
|
|
35 |
result = []
|
36 |
for prediction in predictions:
|
37 |
emotion_dict = {emotion: prob for emotion, prob in zip(emotion_labels, prediction)}
|
38 |
+
# Sort emotions by probability and get top 3
|
39 |
+
top_emotions = sorted(emotion_dict.items(), key=lambda x: x[1], reverse=True)[:3]
|
40 |
+
result.append({emotion: prob for emotion, prob in top_emotions})
|
41 |
|
42 |
return result
|
43 |
|
44 |
# Create the Gradio interface
|
45 |
interface = gr.Interface(
|
46 |
fn=predict_emotions,
|
47 |
+
inputs=gr.Textbox(label="Input Comment", lines=2, placeholder="Enter your comment here...", type="text"),
|
48 |
+
outputs=gr.JSON(label="Predicted Emotions"),
|
49 |
title="Reddit Emotion Classifier",
|
50 |
+
description="Enter one or more comments and predict their emotion labels."
|
51 |
)
|
52 |
|
53 |
# Launch the app
|