File size: 10,990 Bytes
efbe6b4
 
686cd54
efbe6b4
 
 
686cd54
 
 
efbe6b4
 
686cd54
 
efbe6b4
686cd54
 
 
efbe6b4
 
 
 
 
 
 
 
686cd54
 
efbe6b4
 
 
 
 
686cd54
 
efbe6b4
 
 
 
 
 
 
 
 
686cd54
efbe6b4
686cd54
efbe6b4
 
 
 
686cd54
 
efbe6b4
 
 
 
 
 
 
 
 
 
 
 
686cd54
 
efbe6b4
 
 
 
 
 
 
 
 
 
 
686cd54
efbe6b4
 
 
686cd54
 
efbe6b4
 
 
 
 
 
 
 
 
686cd54
efbe6b4
 
686cd54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efbe6b4
 
 
 
 
686cd54
efbe6b4
 
 
 
 
 
686cd54
 
efbe6b4
686cd54
efbe6b4
 
 
 
 
 
 
 
 
 
 
 
686cd54
 
efbe6b4
 
 
 
 
 
 
 
 
 
686cd54
efbe6b4
 
 
 
 
 
 
 
686cd54
 
 
 
 
efbe6b4
 
 
686cd54
 
 
 
 
 
efbe6b4
 
 
686cd54
 
efbe6b4
 
 
686cd54
efbe6b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
686cd54
 
 
 
 
 
efbe6b4
 
 
 
686cd54
 
efbe6b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
686cd54
 
efbe6b4
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import datetime
from io import StringIO
from typing import Union
from random import sample
from collections import defaultdict
from streamlit.runtime.uploaded_file_manager import UploadedFile
from utilities_language_bert.rus_sentence_bert import TASK, SENTENCE
from utilities_language_general.rus_utils import compute_frequency_dict, prepare_tasks, prepare_target_words
from utilities_language_general.rus_constants import st, load_bert, load_classifiers, nlp, summarization, BAD_USER_TARGET_WORDS, MINIMUM_SETS


def main_workflow(
        file: Union[UploadedFile, None],
        text: str,
        logs,
        progress,
        progress_d,
        level: str,
        tw_mode_automatic_mode: str,
        target_words: str,
        num_distractors: int,
        save_name: str,
        global_bad_target_words=BAD_USER_TARGET_WORDS):

    # Clear bad target_words each time
    if global_bad_target_words:
        global_bad_target_words = []

    # Define main global variables
    GLOBAL_DISTRACTORS = set()
    MAX_FREQUENCY = 0

    logs.update(label='Загружаем языковые модели и другие данные', state='running')
    pos_dict, scaler, classifier = load_classifiers('model3')
    mask_filler = load_bert()

    # Get input text
    if file is not None:
        stringio = StringIO(file.getvalue().decode("utf-8"))
        current_text = stringio.read()
    elif text != '':
        current_text = text
    else:
        st.warning('Вы ни текст не вставили, ни файл не выбрали 😢')
        current_text = ''
        st.stop()

    # Process target words
    if tw_mode_automatic_mode == 'Самостоятельно':
        if target_words == '':
            st.warning('Вы не ввели целевые слова')
            st.stop()
        # Cannot make up paradigm, so only USER_TARGET_WORDS is used
        USER_TARGET_WORDS = prepare_target_words(target_words)
        tw_mode_automatic_mode = False
    else:
        USER_TARGET_WORDS = None
        tw_mode_automatic_mode = True

    # Text preprocessing
    original_text = current_text
    current_text = current_text.replace('.', '. ').replace('. . .', '...').replace('  ', ' ').replace('…', '...') \
        .replace('…', '...').replace('—', '-').replace('\u2014', '-').replace('—', '-').replace('-\n', '') \
        .replace('\n', '%^&*')
    current_text_sentences = [sent.text.strip() for sent in nlp(current_text).sents]
    logs.update(label='Получили Ваш текст!', state='running')
    progress.progress(10)

    # Compute frequency dict
    FREQ_DICT = compute_frequency_dict(current_text)

    # Get maximum frequency (top 5% barrier)
    _frequency_barrier_percent = 0.05
    for j, tp in enumerate(FREQ_DICT.items()):
        if j < len(FREQ_DICT) * _frequency_barrier_percent:
            MAX_FREQUENCY = tp[1]
    MAX_FREQUENCY = 3 if MAX_FREQUENCY < 3 else MAX_FREQUENCY
    logs.update(label="Посчитали немного статистики!", state='running')
    progress.progress(15)

    # Choose necessary language minimum according to user's input
    if level:
        target_minimum, distractor_minimum = MINIMUM_SETS[level]
    else:
        target_minimum = None
        distractor_minimum = None
        logs.error('Вы не выбрали языковой уровень!')
        st.stop()

    # Start generation process
    workflow = [SENTENCE(original=sent.strip(), n_sentence=num, max_num_distractors=num_distractors)
                for num, sent in enumerate(current_text_sentences)]
    logs.update(label="Запускаем процесс генерации заданий!", state='running')
    progress.progress(20)

    # Define summary length
    text_length = len(current_text_sentences)
    if text_length <= 15:
        summary_length = text_length
    elif text_length <= 25:
        summary_length = 15
    else:
        n = (text_length - 20) // 5
        summary_length = 15 + 2 * n
    round_summary_length = summary_length - (summary_length % - 10)

    # Get summary. May choose between round_summary_length and summary_length
    SUMMARY = summarization(current_text, num_sentences=round_summary_length)
    logs.update('Нашли интересные предложения. Пригодятся!')
    progress.progress(25)

    for sentence in workflow:
        sentence.lemmatize_sentence()

    for sentence in workflow:
        sentence.bind_phrases()
    logs.update(label="Подготовили предложения для дальнейшей работы!", state='running')
    progress.progress(30)

    for j, sentence in enumerate(workflow):
        sentence.search_target_words(target_words_automatic_mode=tw_mode_automatic_mode,
                                     target_minimum=target_minimum,
                                     user_target_words=USER_TARGET_WORDS,
                                     frequency_dict=FREQ_DICT, 
                                     summary=SUMMARY)
        progress.progress(int(30 + (j * (20 / len(workflow)))))
    progress.progress(50)
    DUPLICATE_TARGET_WORDS = defaultdict(list)
    for sentence in workflow:
        for target_word in sentence.target_words:
            DUPLICATE_TARGET_WORDS[target_word['lemma']].append(target_word)
    RESULT_TW = []
    for tw_lemma, tw_data in DUPLICATE_TARGET_WORDS.items():
        RESULT_TW.append(sample(tw_data, 1)[0])
    for sentence in workflow:
        for target_word in sentence.target_words:
            if target_word not in RESULT_TW:
                global_bad_target_words.append(target_word['original_text'])
                sentence.target_words.remove(target_word)
    progress.progress(55)
    logs.update(label='Выбрали слова-пропуски!', state='running')

    for sentence in workflow:
        for i, target_word in enumerate(sentence.target_words):
            temp = current_text_sentences[:]
            temp[sentence.n_sentence] = target_word['masked_sentence']
            sentence.text_with_masked_task = ' '.join(temp).replace('%^&*', '\n')
            sentence.target_words[i]['text_with_masked_task'] = ' '.join(temp).replace('%^&*', '\n')

    for sentence in workflow:
        sentence.filter_target_words(target_words_automatic_mode=tw_mode_automatic_mode)
    progress.progress(60)

    RESULT_TASKS = []
    for sentence in workflow:
        for target_word in sentence.target_words:
            task = TASK(task_data=target_word, max_num_distractors=num_distractors)
            RESULT_TASKS.append(task)

    for num, task in enumerate(RESULT_TASKS):
        task.attach_distractors_to_target_word(model=mask_filler, 
                                               scaler=scaler,
                                               classifier=classifier,
                                               pos_dict=pos_dict,
                                               level_name=level,
                                               global_distractors=GLOBAL_DISTRACTORS,
                                               distractor_minimum=distractor_minimum,
                                               max_frequency=MAX_FREQUENCY)
        progress_d.progress(num / len(RESULT_TASKS))
        logs.update(label=f'Обработали {num}/{len(RESULT_TASKS)} целевых слов!', state='running')
    logs.update(label=f'Обработали {len(RESULT_TASKS)}/{len(RESULT_TASKS)} целевых слов!', state='running')
    progress_d.progress(100)
    progress.progress(70)
    logs.update(label='Подобрали неправильные варианты!', state='running')

    for task in RESULT_TASKS:
        task.inflect_distractors()
    progress.progress(80)
    logs.update(label='Просклоняли и проспрягали неправильные варианты!', state='running')

    for task in RESULT_TASKS:
        task.sample_distractors(num_distractors=num_distractors)
    progress.progress(85)
    RESULT_TASKS = list(filter(lambda t: not t.bad_target_word, RESULT_TASKS))

    for task in RESULT_TASKS[::-1]:
        if task.bad_target_word:
            RESULT_TASKS.remove(task)

    # Compute number of final tasks
    if len(RESULT_TASKS) >= 20:
        NUMBER_TASKS = 20
    else:
        if len(RESULT_TASKS) >= 15:
            NUMBER_TASKS = 15
        else:
            if len(RESULT_TASKS) >= 10:
                NUMBER_TASKS = 10
            else:
                NUMBER_TASKS = len(RESULT_TASKS)
    RESULT_TASKS_in_summary = list(filter(lambda task: task.in_summary, RESULT_TASKS))
    RESULT_TASTS_not_in_summary = list(filter(lambda task: not task.in_summary, RESULT_TASKS))
    if len(RESULT_TASKS_in_summary) >= NUMBER_TASKS:
        RESULT_TASKS = RESULT_TASKS_in_summary
    else:
        RESULT_TASKS = RESULT_TASKS_in_summary + sample(RESULT_TASTS_not_in_summary, NUMBER_TASKS - len(RESULT_TASKS_in_summary))
    RESULT_TASKS = sorted(RESULT_TASKS, key=lambda t: (t.sentence_number, t.position_in_sentence))

    for task in RESULT_TASKS:
        task.compile_task(max_num_distractors=num_distractors)
    progress.progress(90)
    logs.update(label='Отобрали лучшие задания!', state='running')

    TEXT_WITH_GAPS = []
    VARIANTS = []
    tasks_counter = 1
    for i, sentence in enumerate(current_text_sentences):
        for task in RESULT_TASKS:
            if task.sentence_text == sentence:
                sentence = sentence.replace(task.original_text, f'__________({tasks_counter})')
                VARIANTS.append(task.variants)
                tasks_counter += 1
        TEXT_WITH_GAPS.append(sentence)
    del RESULT_TASKS

    TEXT_WITH_GAPS = ' '.join([sentence for sentence in TEXT_WITH_GAPS]).replace('%^&*', '\n')
    PREPARED_TASKS = prepare_tasks(VARIANTS)
    STUDENT_OUT = f'{TEXT_WITH_GAPS}\n\n{"=" * 70}\n\n{PREPARED_TASKS["TASKS_STUDENT"]}'
    TEACHER_OUT = f'{TEXT_WITH_GAPS}\n\n{"=" * 70}\n\n{PREPARED_TASKS["TASKS_TEACHER"]}\n\n{"=" * 70}\n\n' \
                  f'{PREPARED_TASKS["KEYS_ONLY"]}'
    TOTAL_OUT = f'{original_text}\n\n{"$" * 70}\n\n{STUDENT_OUT}\n\n{"=" * 70}\n\n{PREPARED_TASKS["TASKS_TEACHER"]}' \
                f'\n\n{"$" * 70}\n\n{PREPARED_TASKS["KEYS_ONLY"]}'
    logs.update(label='Сейчас все будет готово!', state='running')
    progress.progress(95)
    save_name = save_name if save_name != '' else f'{str(datetime.datetime.now())[:-7]}_{original_text[:20]}'
    out = {
        'name': save_name,
        'STUDENT_OUT': STUDENT_OUT,
        'TEACHER_OUT': TEACHER_OUT,
        'TEXT_WITH_GAPS': TEXT_WITH_GAPS,
        'TASKS_ONLY': PREPARED_TASKS["RAW_TASKS"],
        'KEYS_ONLY': PREPARED_TASKS["KEYS_ONLY"],
        'KEYS_ONLY_RAW': PREPARED_TASKS["RAW_KEYS_ONLY"],
        'TOTAL_OUT': TOTAL_OUT,
        'ORIGINAL': original_text,
        'BAD_USER_TARGET_WORDS': sorted(set(global_bad_target_words))
    }
    return out