Spaces:
Running
Running
File size: 13,064 Bytes
efbe6b4 686cd54 efbe6b4 686cd54 efbe6b4 686cd54 efbe6b4 686cd54 efbe6b4 686cd54 efbe6b4 686cd54 efbe6b4 686cd54 efbe6b4 686cd54 efbe6b4 686cd54 efbe6b4 686cd54 efbe6b4 686cd54 efbe6b4 686cd54 efbe6b4 686cd54 efbe6b4 686cd54 efbe6b4 686cd54 efbe6b4 686cd54 efbe6b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
import string
from random import random, sample
from utilities_language_general.rus_constants import nlp, PHRASES, BAD_USER_TARGET_WORDS
from utilities_language_general.rus_utils import get_tags, check_token, define_gender, convert_gender, make_inflection, get_distractors_from_model
class SENTENCE:
def __init__(self, original: str, n_sentence: int, max_num_distractors):
self.original = original
self.n_sentence = n_sentence
self.max_num_distractors = max_num_distractors
self.parsed = nlp(self.original)
self.sentence_lemma_pos = []
self.sentence_phrases = []
self.target_words = []
def lemmatize_sentence(self):
for token in self.parsed:
lemma_pos = f'{token.lemma_}_{token.pos_}'
self.sentence_lemma_pos.append((lemma_pos, token))
def bind_phrases(self):
previous_was_phrase = False
for i in range(len(self.sentence_lemma_pos) - 1):
phrase_candidate = f'{self.sentence_lemma_pos[i][0]}_{self.sentence_lemma_pos[i + 1][0]}'
if phrase_candidate in PHRASES and not previous_was_phrase:
# phrase is {phrase: {original_token1: spacy.token, original_token2: spacy.token}}
phrase = [
f'{self.sentence_lemma_pos[i][0]}_{self.sentence_lemma_pos[i + 1][0]}',
{
'original_token1': self.sentence_lemma_pos[i][1],
'original_token2': self.sentence_lemma_pos[i + 1][1]
}
]
self.sentence_phrases.append(phrase)
previous_was_phrase = True
else:
if not previous_was_phrase:
self.sentence_phrases.append(self.sentence_lemma_pos[i][1])
previous_was_phrase = False
def search_target_words_automatically(self, model, target_minimum: set, frequency_dict: dict = None, summary:list=None):
for token in self.sentence_phrases:
# TODO: Still do not have w2v model with phrases
# therefore cannot come up with the criteria
if isinstance(token, list): # if token is a phrase
original_token1 = token[1]['original_token1']
original_token2 = token[1]['original_token2']
original_token1_tags = get_tags(original_token1.text)[0]
original_token2_tags = get_tags(original_token2.text)[0]
tags = original_token1_tags | original_token2_tags
not_ner = True if (original_token1.ent_type == 0 and original_token2.ent_type == 0) else False
target_word = {
'sentence_number': self.n_sentence,
'sentence_text': self.original,
'original_text': f'{original_token1.text} {original_token2.text}',
'lemma': token[0],
'pos': ('phrase', [original_token1.pos_, original_token2.pos_]),
'gender': list({define_gender(original_token1), define_gender(original_token2)})[0],
'tags': tags,
'position_in_sentence': self.original.find(original_token1.text),
'not_named_entity': not_ner,
'frequency_in_text': 0,
'in_summary': self.original in summary
}
self.target_words.append(target_word)
else: # if token is just a spacy.nlp token
if check_token(model=model, token=token, lemma_pos='auto', current_minimum=target_minimum):
target_word = {
'sentence_number': self.n_sentence,
'sentence_text': self.original,
'original_text': token.text,
'lemma': token.lemma_,
'pos': ('simple', token.pos_),
'gender': define_gender(token.lemma_),
'number_children': len([child for child in token.children]),
'tags': get_tags(token.text)[0],
'position_in_sentence': self.original.find(token.text),
'not_named_entity': True if token.ent_type == 0 else False,
'frequency_in_text': frequency_dict.get(token.lemma_, 1),
'in_summary': self.original in summary
}
self.target_words.append(target_word)
def search_user_target_words(self, model, user_target_words: set = None, frequency_dict: dict = None, summary:list=None):
for _utw in user_target_words:
if _utw in self.original:
parse_utw = nlp(_utw)
if ' ' in _utw:
tags = get_tags(parse_utw[0].text)[0] | get_tags(parse_utw[1].text)[0]
user_target_word_lemma = '_'.join([f'{token.lemma_}_{token.pos_}' for token in parse_utw])
user_target_word_pos = ('phrase', [token.pos_ for token in parse_utw])
user_target_word_tags = tags
not_ner = True if (parse_utw[0].ent_type == 0 and parse_utw[1].ent_type == 0) else False
else:
user_target_word_lemma = f'{parse_utw[0].lemma_}_{parse_utw[0].pos_}'
user_target_word_pos = ('simple', parse_utw[0].pos_)
user_target_word_tags = get_tags(parse_utw[0].text)[0]
not_ner = parse_utw[0].ent_type == 0
target_word = {
'sentence_number': self.n_sentence,
'sentence_text': self.original,
'original_text': _utw,
'lemma': user_target_word_lemma,
'pos': user_target_word_pos,
'gender': convert_gender(user_target_word_tags.get('Gender')),
'tags': user_target_word_tags,
'position_in_sentence': self.original.find(_utw),
'not_named_entity': not_ner,
'frequency_in_text': frequency_dict.get(user_target_word_lemma, 1),
'in_summary': self.original in summary
}
if not (model.has_index_for(user_target_word_lemma)
or model.has_index_for(f'{user_target_word_lemma}_{user_target_word_pos[1]}')):
BAD_USER_TARGET_WORDS.append(_utw)
else:
self.target_words.append(target_word)
def search_target_words(self, model, target_words_automatic_mode: bool, target_minimum,
user_target_words: set = None,
frequency_dict: dict = None, summary: list=None):
if target_words_automatic_mode:
self.search_target_words_automatically(model=model, target_minimum=target_minimum,
frequency_dict=frequency_dict, summary=summary)
else:
self.search_user_target_words(model=model, user_target_words=user_target_words,
frequency_dict=frequency_dict, summary=summary)
def attach_distractors_to_target_word(self, model, scaler, classifier, pos_dict, global_distractors,
distractor_minimum, level_name, max_frequency, logs, progress):
n_target_words = len(self.target_words)
bad_target_words = []
for i, target_word in enumerate(self.target_words):
pos = target_word['pos'][0] if target_word['pos'][0] == 'phrase' else target_word['pos'][1]
distractors = get_distractors_from_model(doc=self.parsed, model=model, scaler=scaler, classifier=classifier, pos_dict=pos_dict,
target_text=target_word['original_text'], lemma=target_word['lemma'],
pos=pos, gender=target_word['gender'], lemma_index=target_word['position_in_sentence'],
global_distractors=global_distractors, distractor_minimum=distractor_minimum, level_name=level_name,
max_num_distractors=self.max_num_distractors)
if distractors is None or target_word['frequency_in_text'] > max_frequency:
target_word['distractors'] = distractors
bad_target_words.append(target_word)
target_word['distractors'] = distractors
target_word['distractors_number'] = len(distractors) if distractors is not None else 0
progress.progress(i / n_target_words)
logs.update(label=f'Обработали {i}/{n_target_words} слов в {self.n_sentence + 1}-м предложении',
state='running')
for btw in bad_target_words:
BAD_USER_TARGET_WORDS.append(btw['original_text'])
self.target_words.remove(btw)
progress.progress(100)
logs.update(label=f'Обработали {n_target_words}/{n_target_words} слов в {self.n_sentence + 1}-м предложении',
state='running')
def inflect_distractors(self, level_name):
bad_target_words = []
for target_word in self.target_words:
inflected_distractors = []
for distractor_lemma, distractor_similarity in target_word['distractors']:
if distractor_lemma.count('_') > 1:
# TODO The same. Has to train model and test this code
inflected = make_inflection(text=distractor_lemma, level=level_name,
pos=target_word['pos'][1], tags=target_word['tags'])
else:
inflected = make_inflection(text=distractor_lemma, level=level_name,
pos=target_word['pos'][1], tags=target_word['tags'])
if inflected is not None:
inflected_distractors.append(inflected)
num_distractors = min(4, self.max_num_distractors) if self.max_num_distractors >= 4 \
else self.max_num_distractors
if len(inflected_distractors) < num_distractors:
bad_target_words.append(target_word)
else:
target_word['inflected_distractors'] = inflected_distractors
for btw in bad_target_words:
BAD_USER_TARGET_WORDS.append(btw['original_text'])
self.target_words.remove(btw)
def filter_target_words(self, target_words_automatic_mode):
c_position = 0
bad_target_words = []
for target_word in self.target_words:
position_difference = 3 if target_words_automatic_mode else 0
if not (target_word['position_in_sentence'] == 0
or abs(target_word['position_in_sentence'] - c_position) >= position_difference):
bad_target_words.append(target_word)
for btw in bad_target_words:
BAD_USER_TARGET_WORDS.append(btw['original_text'])
self.target_words.remove(btw)
def sample_distractors(self, num_distractors):
for target_word in self.target_words:
len_inflected_distractors = len(target_word['inflected_distractors'])
num_distractors = min(len_inflected_distractors, num_distractors) \
if num_distractors >= 4 else num_distractors
target_word['inflected_distractors'] = sample(target_word['inflected_distractors'][:min(
len_inflected_distractors, 10)], num_distractors)
class TASK:
def __init__(self, task_data):
self.task_data = task_data
self.original_text = None
self.sentence_text = None
self.inflected_distractors = None
self.sentence_number = task_data['sentence_number']
self.position_in_sentence = task_data['position_in_sentence']
self.result = ''
self.variants = []
for key, value in task_data.items():
self.__setattr__(key, value)
def __repr__(self):
return '\n'.join([f'{key}\t=\t{value}' for key, value in self.__dict__.items()])
def compile_task(self, max_num_distractors):
len_distractors = len(self.inflected_distractors)
len_variants = min(len_distractors, max_num_distractors) if max_num_distractors > 4 \
else max_num_distractors
letters = (f'({letter})' for letter in string.ascii_lowercase[:len_variants + 1])
try:
distractors = sample(self.inflected_distractors, len_variants) + [self.original_text, ]
except ValueError:
distractors = self.inflected_distractors + [self.original_text, ]
self.variants.append(
(self.original_text, [f'{item[0]} {item[1].replace("_", " ")}'
for item in zip(letters, sorted(distractors, key=lambda _: random()))]))
|