File size: 13,064 Bytes
efbe6b4
686cd54
 
 
efbe6b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
686cd54
efbe6b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
686cd54
 
efbe6b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
686cd54
efbe6b4
 
 
686cd54
efbe6b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
686cd54
 
efbe6b4
 
 
 
 
 
 
 
 
686cd54
efbe6b4
 
686cd54
efbe6b4
 
686cd54
efbe6b4
686cd54
 
efbe6b4
 
 
 
686cd54
 
 
 
efbe6b4
 
 
 
 
 
 
686cd54
 
efbe6b4
 
 
 
686cd54
 
efbe6b4
686cd54
efbe6b4
 
 
 
 
 
686cd54
efbe6b4
 
686cd54
efbe6b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import string
from random import random, sample
from utilities_language_general.rus_constants import nlp, PHRASES, BAD_USER_TARGET_WORDS
from utilities_language_general.rus_utils import get_tags, check_token, define_gender, convert_gender, make_inflection, get_distractors_from_model


class SENTENCE:
    def __init__(self, original: str, n_sentence: int, max_num_distractors):
        self.original = original
        self.n_sentence = n_sentence
        self.max_num_distractors = max_num_distractors
        self.parsed = nlp(self.original)
        self.sentence_lemma_pos = []
        self.sentence_phrases = []
        self.target_words = []

    def lemmatize_sentence(self):
        for token in self.parsed:
            lemma_pos = f'{token.lemma_}_{token.pos_}'
            self.sentence_lemma_pos.append((lemma_pos, token))

    def bind_phrases(self):
        previous_was_phrase = False
        for i in range(len(self.sentence_lemma_pos) - 1):
            phrase_candidate = f'{self.sentence_lemma_pos[i][0]}_{self.sentence_lemma_pos[i + 1][0]}'
            if phrase_candidate in PHRASES and not previous_was_phrase:
                # phrase is {phrase: {original_token1: spacy.token, original_token2: spacy.token}}
                phrase = [
                    f'{self.sentence_lemma_pos[i][0]}_{self.sentence_lemma_pos[i + 1][0]}',
                    {
                        'original_token1': self.sentence_lemma_pos[i][1],
                        'original_token2': self.sentence_lemma_pos[i + 1][1]
                    }
                ]
                self.sentence_phrases.append(phrase)
                previous_was_phrase = True
            else:
                if not previous_was_phrase:
                    self.sentence_phrases.append(self.sentence_lemma_pos[i][1])
                previous_was_phrase = False

    def search_target_words_automatically(self, model, target_minimum: set, frequency_dict: dict = None, summary:list=None):
        for token in self.sentence_phrases:
            # TODO: Still do not have w2v model with phrases
            #  therefore cannot come up with the criteria
            if isinstance(token, list):  # if token is a phrase
                original_token1 = token[1]['original_token1']
                original_token2 = token[1]['original_token2']
                original_token1_tags = get_tags(original_token1.text)[0]
                original_token2_tags = get_tags(original_token2.text)[0]
                tags = original_token1_tags | original_token2_tags
                not_ner = True if (original_token1.ent_type == 0 and original_token2.ent_type == 0) else False
                target_word = {
                    'sentence_number': self.n_sentence,
                    'sentence_text': self.original,
                    'original_text': f'{original_token1.text} {original_token2.text}',
                    'lemma': token[0],
                    'pos': ('phrase', [original_token1.pos_, original_token2.pos_]),
                    'gender': list({define_gender(original_token1), define_gender(original_token2)})[0],
                    'tags': tags,
                    'position_in_sentence': self.original.find(original_token1.text),
                    'not_named_entity': not_ner,
                    'frequency_in_text': 0,
                    'in_summary': self.original in summary
                }
                self.target_words.append(target_word)
            else:  # if token is just a spacy.nlp token
                if check_token(model=model, token=token, lemma_pos='auto', current_minimum=target_minimum):
                    target_word = {
                        'sentence_number': self.n_sentence,
                        'sentence_text': self.original,
                        'original_text': token.text,
                        'lemma': token.lemma_,
                        'pos': ('simple', token.pos_),
                        'gender': define_gender(token.lemma_),
                        'number_children': len([child for child in token.children]),
                        'tags': get_tags(token.text)[0],
                        'position_in_sentence': self.original.find(token.text),
                        'not_named_entity': True if token.ent_type == 0 else False,
                        'frequency_in_text': frequency_dict.get(token.lemma_, 1),
                        'in_summary': self.original in summary
                    }
                    self.target_words.append(target_word)

    def search_user_target_words(self, model, user_target_words: set = None, frequency_dict: dict = None, summary:list=None):
        for _utw in user_target_words:
            if _utw in self.original:
                parse_utw = nlp(_utw)
                if ' ' in _utw:
                    tags = get_tags(parse_utw[0].text)[0] | get_tags(parse_utw[1].text)[0]
                    user_target_word_lemma = '_'.join([f'{token.lemma_}_{token.pos_}' for token in parse_utw])
                    user_target_word_pos = ('phrase', [token.pos_ for token in parse_utw])
                    user_target_word_tags = tags
                    not_ner = True if (parse_utw[0].ent_type == 0 and parse_utw[1].ent_type == 0) else False
                else:
                    user_target_word_lemma = f'{parse_utw[0].lemma_}_{parse_utw[0].pos_}'
                    user_target_word_pos = ('simple', parse_utw[0].pos_)
                    user_target_word_tags = get_tags(parse_utw[0].text)[0]
                    not_ner = parse_utw[0].ent_type == 0
                target_word = {
                    'sentence_number': self.n_sentence,
                    'sentence_text': self.original,
                    'original_text': _utw,
                    'lemma': user_target_word_lemma,
                    'pos': user_target_word_pos,
                    'gender': convert_gender(user_target_word_tags.get('Gender')),
                    'tags': user_target_word_tags,
                    'position_in_sentence': self.original.find(_utw),
                    'not_named_entity': not_ner,
                    'frequency_in_text': frequency_dict.get(user_target_word_lemma, 1),
                    'in_summary': self.original in summary
                }
                if not (model.has_index_for(user_target_word_lemma)
                        or model.has_index_for(f'{user_target_word_lemma}_{user_target_word_pos[1]}')):
                    BAD_USER_TARGET_WORDS.append(_utw)
                else:
                    self.target_words.append(target_word)

    def search_target_words(self, model, target_words_automatic_mode: bool, target_minimum,
                            user_target_words: set = None,
                            frequency_dict: dict = None, summary: list=None):
        if target_words_automatic_mode:
            self.search_target_words_automatically(model=model, target_minimum=target_minimum,
                                                   frequency_dict=frequency_dict, summary=summary)
        else:
            self.search_user_target_words(model=model, user_target_words=user_target_words,
                                          frequency_dict=frequency_dict, summary=summary)

    def attach_distractors_to_target_word(self, model, scaler, classifier, pos_dict, global_distractors, 
                                          distractor_minimum, level_name, max_frequency, logs, progress):
        n_target_words = len(self.target_words)
        bad_target_words = []
        for i, target_word in enumerate(self.target_words):
            pos = target_word['pos'][0] if target_word['pos'][0] == 'phrase' else target_word['pos'][1]
            distractors = get_distractors_from_model(doc=self.parsed, model=model, scaler=scaler, classifier=classifier, pos_dict=pos_dict,
                                                     target_text=target_word['original_text'], lemma=target_word['lemma'],
                                                     pos=pos, gender=target_word['gender'], lemma_index=target_word['position_in_sentence'],
                                                     global_distractors=global_distractors, distractor_minimum=distractor_minimum, level_name=level_name, 
                                                     max_num_distractors=self.max_num_distractors)
            if distractors is None or target_word['frequency_in_text'] > max_frequency:
                target_word['distractors'] = distractors
                bad_target_words.append(target_word)
            target_word['distractors'] = distractors
            target_word['distractors_number'] = len(distractors) if distractors is not None else 0
            progress.progress(i / n_target_words)
            logs.update(label=f'Обработали {i}/{n_target_words} слов в {self.n_sentence + 1}-м предложении',
                        state='running')
        for btw in bad_target_words:
            BAD_USER_TARGET_WORDS.append(btw['original_text'])
            self.target_words.remove(btw)
        progress.progress(100)
        logs.update(label=f'Обработали {n_target_words}/{n_target_words} слов в {self.n_sentence + 1}-м предложении',
                    state='running')

    def inflect_distractors(self, level_name):
        bad_target_words = []
        for target_word in self.target_words:
            inflected_distractors = []
            for distractor_lemma, distractor_similarity in target_word['distractors']:
                if distractor_lemma.count('_') > 1:
                    # TODO The same. Has to train model and test this code
                    inflected = make_inflection(text=distractor_lemma, level=level_name,
                                                pos=target_word['pos'][1], tags=target_word['tags'])
                else:
                    inflected = make_inflection(text=distractor_lemma, level=level_name,
                                                pos=target_word['pos'][1], tags=target_word['tags'])
                if inflected is not None:
                    inflected_distractors.append(inflected)
            num_distractors = min(4, self.max_num_distractors) if self.max_num_distractors >= 4 \
                else self.max_num_distractors
            if len(inflected_distractors) < num_distractors:
                bad_target_words.append(target_word)
            else:
                target_word['inflected_distractors'] = inflected_distractors
        for btw in bad_target_words:
            BAD_USER_TARGET_WORDS.append(btw['original_text'])
            self.target_words.remove(btw)

    def filter_target_words(self, target_words_automatic_mode):
        c_position = 0
        bad_target_words = []
        for target_word in self.target_words:
            position_difference = 3 if target_words_automatic_mode else 0
            if not (target_word['position_in_sentence'] == 0
                    or abs(target_word['position_in_sentence'] - c_position) >= position_difference):
                bad_target_words.append(target_word)
        for btw in bad_target_words:
            BAD_USER_TARGET_WORDS.append(btw['original_text'])
            self.target_words.remove(btw)

    def sample_distractors(self, num_distractors):
        for target_word in self.target_words:
            len_inflected_distractors = len(target_word['inflected_distractors'])
            num_distractors = min(len_inflected_distractors, num_distractors) \
                if num_distractors >= 4 else num_distractors
            target_word['inflected_distractors'] = sample(target_word['inflected_distractors'][:min(
                len_inflected_distractors, 10)], num_distractors)


class TASK:
    def __init__(self, task_data):
        self.task_data = task_data

        self.original_text = None
        self.sentence_text = None
        self.inflected_distractors = None
        self.sentence_number = task_data['sentence_number']
        self.position_in_sentence = task_data['position_in_sentence']
        self.result = ''
        self.variants = []
        for key, value in task_data.items():
            self.__setattr__(key, value)

    def __repr__(self):
        return '\n'.join([f'{key}\t=\t{value}' for key, value in self.__dict__.items()])

    def compile_task(self, max_num_distractors):
        len_distractors = len(self.inflected_distractors)
        len_variants = min(len_distractors, max_num_distractors) if max_num_distractors > 4 \
            else max_num_distractors
        letters = (f'({letter})' for letter in string.ascii_lowercase[:len_variants + 1])
        try:
            distractors = sample(self.inflected_distractors, len_variants) + [self.original_text, ]
        except ValueError:
            distractors = self.inflected_distractors + [self.original_text, ]
        self.variants.append(
            (self.original_text, [f'{item[0]} {item[1].replace("_", " ")}'
                                  for item in zip(letters, sorted(distractors, key=lambda _: random()))]))