togokah commited on
Commit
686f61c
·
1 Parent(s): 3a8bdd9
utilities_language_bert/rus_sentence_bert.py CHANGED
@@ -236,6 +236,6 @@ class TASK:
236
  distractors = sample(self.inflected_distractors, len_variants) + [self.original_text, ]
237
  except ValueError:
238
  distractors = self.inflected_distractors + [self.original_text, ]
239
- tmp_vars = [f'{item[0]} {item[1].replace("_", " ")}'.lower()
240
  for item in zip(letters, sorted(distractors, key=lambda _: random()))]
241
  self.variants.append((self.original_text.lower(), tmp_vars))
 
236
  distractors = sample(self.inflected_distractors, len_variants) + [self.original_text, ]
237
  except ValueError:
238
  distractors = self.inflected_distractors + [self.original_text, ]
239
+ tmp_vars = [f'{item[0]} {item[1].replace("_", " ").lower()}'.lower()
240
  for item in zip(letters, sorted(distractors, key=lambda _: random()))]
241
  self.variants.append((self.original_text.lower(), tmp_vars))
utilities_language_general/rus_constants.py CHANGED
@@ -5,21 +5,25 @@ import pymorphy2
5
  import streamlit as st
6
  from transformers import pipeline
7
 
 
8
  @st.cache_resource
9
  def load_morph():
10
  _morph = pymorphy2.MorphAnalyzer(lang='ru')
11
  return _morph
12
 
 
13
  @st.cache_resource
14
  def load_w2v(model_path):
15
  _w2v_model = gensim.models.KeyedVectors.load_word2vec_format(model_path, binary=True)
16
  return _w2v_model
17
 
18
- @st.cache_resource
 
19
  def load_spacy():
20
  _nlp = spacy.load('ru_core_news_lg')
21
  return _nlp
22
 
 
23
  @st.cache_resource
24
  def load_bert():
25
  return pipeline("fill-mask", model="a-v-white/ruBert-base-finetuned-russian-moshkov-child-corpus-pro")
 
5
  import streamlit as st
6
  from transformers import pipeline
7
 
8
+
9
  @st.cache_resource
10
  def load_morph():
11
  _morph = pymorphy2.MorphAnalyzer(lang='ru')
12
  return _morph
13
 
14
+
15
  @st.cache_resource
16
  def load_w2v(model_path):
17
  _w2v_model = gensim.models.KeyedVectors.load_word2vec_format(model_path, binary=True)
18
  return _w2v_model
19
 
20
+
21
+ @st.cache_resource
22
  def load_spacy():
23
  _nlp = spacy.load('ru_core_news_lg')
24
  return _nlp
25
 
26
+
27
  @st.cache_resource
28
  def load_bert():
29
  return pipeline("fill-mask", model="a-v-white/ruBert-base-finetuned-russian-moshkov-child-corpus-pro")
utilities_language_general/rus_utils.py CHANGED
@@ -318,8 +318,8 @@ def prepare_tasks(input_variants):
318
  for num, item in enumerate(input_variants):
319
  item = item[0]
320
  answer = item[0].lower()
321
- variants = '\t'.join(item[1])
322
- current_answer_letter = answer_letter(answer=answer, variants=item[1])
323
  RAW_TASKS.append((num + 1, variants))
324
  RAW_KEYS_ONLY.append((num + 1, current_answer_letter.split(' ')[0]))
325
  RESULT_TASKS_STUDENT.append(f"{num + 1}.\t{variants}")
 
318
  for num, item in enumerate(input_variants):
319
  item = item[0]
320
  answer = item[0].lower()
321
+ variants = '\t'.join([i.lower() for i in item[1]])
322
+ current_answer_letter = answer_letter(answer=answer, variants=[i.lower() for i in item[1]])
323
  RAW_TASKS.append((num + 1, variants))
324
  RAW_KEYS_ONLY.append((num + 1, current_answer_letter.split(' ')[0]))
325
  RESULT_TASKS_STUDENT.append(f"{num + 1}.\t{variants}")