import json import spacy import gensim import pymorphy2 import streamlit as st from transformers import pipeline @st.cache_resource def load_morph(): _morph = pymorphy2.MorphAnalyzer(lang='ru') return _morph @st.cache_resource def load_w2v(model_path): _w2v_model = gensim.models.KeyedVectors.load_word2vec_format(model_path, binary=True) return _w2v_model @st.cache_resource def load_spacy(): _nlp = spacy.load('ru_core_news_lg') return _nlp @st.cache_resource def load_bert(): return pipeline("fill-mask", model="a-v-white/ruBert-base-finetuned-russian-moshkov-child-corpus-pro") nlp = load_spacy() morph = load_morph() w2v_model1_path = r'model1.gz' w2v_model2_path = r'model2.gz' # Upload stop list stop_list = set() with open(r'language_data/stop_words.txt', 'r', encoding='utf-8') as read_file: for line in read_file: stop_list.add(line.strip()) # Upload minimums a1_path, a1_target_set = r'language_data/A1_MINIMUM.txt', set() a2_path, a2_target_set = r'language_data/A2_MINIMUM.txt', set() b1_path, b1_target_set = r'language_data/B1_MINIMUM.txt', set() b2_path, b2_target_set = r'language_data/B2_MINIMUM.txt', set() c1_path, c1_target_set = r'language_data/C1_MINIMUM.txt', set() c2_path, c2_target_set = r'language_data/C2_MINIMUM.txt', set() minimums_paths = (a1_path, a2_path, b1_path, b2_path) minimums_sets = (a1_target_set, a2_target_set, b1_target_set, b2_target_set, c1_target_set, c2_target_set) for i in range(len(minimums_paths)): with open(minimums_paths[i], 'r', encoding='utf-8') as read_file: for line in read_file: minimums_sets[i].add(line.strip()) a1_distractor_set = a1_target_set a2_distractor_set = a2_target_set.union(a1_target_set) b1_distractor_set = b1_target_set.union(a2_target_set) b2_distractor_set = b2_target_set.union(b1_target_set) c1_distractor_set = c1_target_set.union(b2_target_set) c2_distractor_set = c2_target_set.union(c1_target_set) with open('language_data/phrases.json', 'r', encoding='utf-8') as f: PHRASES = set(json.load(f)['PHRASES']) SIMILARITY_VALUES_w2v = {'A1': 1.0, 'A2': 1.0, 'B1': 1.0, 'B2': 1.0, 'C1': 1.0, 'C2': 1.0, 'Без уровня': 1.0} SIMILARITY_VALUES_bert = {'A1': 1.0, 'A2': 1.0, 'B1': 1.0, 'B2': 1.0, 'C1': 1.0, 'C2': 1.0, 'Без уровня': 1.0} BAD_USER_TARGET_WORDS = []