Spaces:
Running
Running
File size: 12,241 Bytes
2609fac 384d7d5 9efc4ef 2609fac 9efc4ef 2609fac 9efc4ef 2609fac 9efc4ef 2609fac 9efc4ef 2609fac 9efc4ef 2609fac 9efc4ef 2609fac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
from nltk import edit_distance
from utilities.utils import answer_letter
from utilities_language_general.esp_constants import nlp
from utilities_language_general.esp_constants import FIX_LEMMA
from utilities_language_general.esp_constants import SIMILARITY_VALUES
from utilities_language_general.esp_constants import SIMILARITY_VALUES_bert
def prepare_target_words(target_words):
target_words = target_words.replace(' ,', ',').replace(',', ', ').replace(' ', ' ').split(', ')
return list(set(target_words))
def compute_frequency_dict(text: str) -> dict:
"""
Compute frequency dictionary of given text and return it sorted in descending order.
:param text: given text as string variable
:return: frequency dictionary {word: frequency} sorted in descending order
"""
freq_dict = {}
doc = nlp(text)
lemma_list_spacy = [token.lemma_ for token in doc]
for lemma in lemma_list_spacy:
if lemma.isalpha():
if lemma not in freq_dict.keys():
freq_dict[lemma] = 1
else:
freq_dict[lemma] += 1
return freq_dict
def get_tags(token: str):
return nlp(token)[0].morph.to_dict()
def fix_irregular_lemma(lemma, fixed_lemmas=FIX_LEMMA):
for key, value in fixed_lemmas.items():
if lemma in value:
return key
return lemma
def check_token(token, lemma_pos, model, current_minimum: set = None, check_allowed_pos: set = None,
check_allowed_dep: set = None) -> bool:
not_allowed_pos = {'PROPN', 'PUNCT', 'NUM'}
not_allowed_dep = {'cop', } # 'ROOT'
if lemma_pos == 'auto':
lemma_pos = f'{token.lemma_}_{token.pos_}'
if not token.text.isalpha():
return False
if current_minimum is not None and token.lemma_ not in current_minimum:
return False
if not model.has_index_for(lemma_pos):
return False
if (not token.is_oov
and not token.is_stop):
if check_allowed_pos is None and check_allowed_dep is None:
if token.pos_ not in not_allowed_pos and token.dep_ not in not_allowed_dep:
return True
return False
elif check_allowed_pos is not None and check_allowed_dep is None:
if token.pos_ in check_allowed_pos and token.dep_ not in not_allowed_dep:
return True
return False
elif check_allowed_pos is None and check_allowed_dep is not None:
if token.pos_ not in not_allowed_pos and token.dep_ in check_allowed_dep:
return True
return False
else:
if token.pos_ in check_allowed_pos and token.dep_ in check_allowed_dep:
return True
return False
else:
return False
def check_token_bert(token, current_minimum: set = None, check_allowed_pos: set = None,
check_allowed_dep: set = None) -> bool:
not_allowed_pos = {'PROPN', 'PUNCT', 'NUM'}
not_allowed_synt_dep = {'cop', } # 'ROOT'
if not token.text.isalpha():
return False
if current_minimum is not None and token.lemma_ not in current_minimum:
return False
if get_tags(token.text) is not None:
tags = get_tags(token.text)
else:
tags = None
if not token.is_stop and tags is not None:
if check_allowed_pos is None and check_allowed_dep is None:
if token.pos_ not in not_allowed_pos and token.dep_ not in not_allowed_synt_dep:
return True
return False
elif check_allowed_pos is not None and check_allowed_dep is None:
if token.pos_ in check_allowed_pos and token.dep_ not in not_allowed_synt_dep:
return True
return False
elif check_allowed_pos is None and check_allowed_dep is not None:
if token.pos_ not in not_allowed_pos and token.dep_ in check_allowed_dep:
return True
return False
else:
if token.pos_ in check_allowed_pos and token.dep_ in check_allowed_dep:
return True
return False
else:
return False
def get_distractors_from_model(model, lemma: str, pos: str, gender: str or None, global_distractors: set,
distractor_minimum: set, level_name: str, max_num_distractors: int,
max_length_ratio=5, min_edit_distance_ratio=0.5):
distractors = []
query = lemma if '_' in lemma else f'{lemma}_{pos}'
lemma = '_'.join(lemma.split('_')[::2])
if model.has_index_for(query):
candidates = model.most_similar(query, topn=max_num_distractors + 100)
else:
if query.count('_') == 1:
return None
query_raw_list = query.split('_')
query_parts = ['_'.join(query_raw_list[i:i + 2]) for i in range(len(query_raw_list))][::2]
query_vector = model.get_mean_vector(query_parts)
candidates = model.similar_by_vector(query_vector, topn=max_num_distractors + 100)
for candidate in candidates:
if candidate[0].count('_') == 1:
distractor_lemma, distractor_pos = candidate[0].split('_')
distractor_similarity = candidate[1]
candidate_gender = get_tags(distractor_lemma).get('Gender')
length_ratio = abs(len(lemma) - len(distractor_lemma))
condition = ((distractor_pos == pos
or (distractor_pos in ('VERB', 'ADJ', 'phrase') and pos in ('VERB', 'ADJ', 'phrase')))
and distractor_lemma != lemma
and len(distractors) < 100
and distractor_similarity < SIMILARITY_VALUES[level_name]
and candidate_gender == gender
and length_ratio <= max_length_ratio
and distractor_lemma not in global_distractors
and edit_distance(lemma, distractor_lemma) / ((len(lemma) + len(distractor_lemma)) / 2) >
min_edit_distance_ratio)
if condition:
if distractor_minimum is not None:
if distractor_lemma in distractor_minimum:
distractors.append((distractor_lemma, distractor_similarity))
global_distractors.add(distractor_lemma)
else:
distractors.append((distractor_lemma, distractor_similarity))
global_distractors.add(distractor_lemma)
else:
if candidate[0].count('_') > 3 or pos in ('NOUN', 'ADJ', 'NUM'):
continue
d1_lemma, d1_pos, d2_lemma, d2_pos = candidate[0].split('_')
distractor_lemma = f'{d1_lemma}_{d2_lemma}'
distractor_similarity = candidate[1]
condition = (((d1_pos == pos or d2_pos == pos)
or (d1_pos in ('VERB', 'AUX', 'SCONJ', 'ADP')
and pos in ('phrase', 'VERB', 'AUX', 'SCONJ', 'ADP'))
or (d2_pos in ('VERB', 'AUX', 'SCONJ', 'ADP')
and pos in ('phrase', 'VERB', 'AUX', 'SCONJ', 'ADP')))
and candidate[0] != lemma
and distractor_lemma != lemma
and len(distractors) < 100
and distractor_similarity < SIMILARITY_VALUES[level_name]
and distractor_lemma not in global_distractors)
if condition:
if distractor_minimum is not None:
if (distractor_lemma in distractor_minimum
or (d1_lemma in distractor_minimum and d2_lemma in distractor_minimum)):
distractors.append((candidate[0], distractor_similarity))
global_distractors.add(distractor_lemma)
else:
distractors.append((candidate[0], distractor_similarity))
global_distractors.add(distractor_lemma)
max_num_distractors = min(4, max_num_distractors) if max_num_distractors >= 4 else max_num_distractors
if len(distractors) >= max_num_distractors:
return distractors
else:
return None
def get_distractors_from_model_bert(model, text_with_masked_task: str, lemma: str, pos: str, gender: str or None,
global_distractors: set, distractor_minimum: set, level_name: str,
max_num_distractors: int, max_length_ratio=5, min_edit_distance_ratio=0.5):
_distractors = []
try:
bert_candidates = [token for token in model(text_with_masked_task, top_k=max_num_distractors + 100)]
candidates = []
for candidate in bert_candidates:
if isinstance(candidate, list):
bert_candidates = candidate
continue
if candidate['token_str'].isalpha():
candidate_morph = nlp(candidate['token_str'])[0]
candidates.append((f"{candidate_morph.lemma_}_{candidate_morph.pos_}", candidate['score']))
except KeyError:
return None
for candidate_distractor in candidates:
if '_' in candidate_distractor[0]:
distractor_lemma, distractor_pos = candidate_distractor[0].split('_')
else:
candidate_morph = nlp(candidate_distractor[0])[0]
distractor_lemma, distractor_pos = candidate_morph.lemma_, candidate_morph.pos_
distractor_similarity = candidate_distractor[1]
candidate_gender = get_tags(distractor_lemma).get('Gender')
length_ratio = abs(len(lemma) - len(distractor_lemma))
if (((distractor_pos == pos)
or (pos in ('VERB', 'ADJ', 'phrase') and distractor_pos in ('VERB', 'ADJ', 'phrase')))
and distractor_lemma != lemma
and (len(_distractors) < max_num_distractors+10)
and (distractor_similarity < SIMILARITY_VALUES_bert[level_name])
and (candidate_gender == gender)
and (length_ratio <= max_length_ratio) # May be changed if case of phrases
and (distractor_lemma not in global_distractors)
and (edit_distance(lemma, distractor_lemma) # May be changed if case of phrases
/ ((len(lemma) + len(distractor_lemma)) / 2) > min_edit_distance_ratio)):
if distractor_minimum is not None:
if distractor_lemma in distractor_minimum:
_distractors.append((distractor_lemma, candidate_distractor[1]))
global_distractors.add(distractor_lemma)
else:
_distractors.append((distractor_lemma, candidate_distractor[1]))
num_distractors = min(4, max_num_distractors) if max_num_distractors >= 4 else max_num_distractors
if len(_distractors) < num_distractors:
return None
return _distractors
def prepare_tasks(input_variants):
TASKS_STUDENT = ''
TASKS_TEACHER = ''
KEYS_ONLY = ''
RAW_TASKS = []
RAW_KEYS_ONLY = []
RESULT_TASKS_STUDENT = []
TASKS_WITH_ANSWERS_L = []
KEYS = []
for num, item in enumerate(input_variants):
item = item[0]
answer = item[0]
variants = '\t'.join(item[1])
current_answer_letter = answer_letter(answer=answer, variants=item[1])
RAW_TASKS.append((num + 1, variants))
RAW_KEYS_ONLY.append((num + 1, current_answer_letter.split(' ')[0]))
RESULT_TASKS_STUDENT.append(f"{num + 1}.\t{variants}")
TASKS_WITH_ANSWERS_L.append(f"{num + 1}.\t"
f"Ответ: {current_answer_letter}\n\t"
f"Варианты: {variants}")
KEYS.append(f"{num + 1}.\tОтвет: {current_answer_letter}")
for task in RESULT_TASKS_STUDENT:
TASKS_STUDENT += f'{task}\n'
for task in TASKS_WITH_ANSWERS_L:
TASKS_TEACHER += f'{task}\n'
for task in KEYS:
KEYS_ONLY += f'{task}\n'
return {'TASKS_STUDENT': TASKS_STUDENT, 'TASKS_TEACHER': TASKS_TEACHER,
'KEYS_ONLY': KEYS_ONLY, 'RAW_TASKS': RAW_TASKS, 'RAW_KEYS_ONLY': RAW_KEYS_ONLY}
|