File size: 14,479 Bytes
ea7c789
 
 
c6373c4
67c343e
59668c6
67c343e
0fec18b
ea7c789
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import numpy as np
from math import pow
from utilities_language_general.esp_constants import nlp, PHRASES, LEVEL_NUMBERS
import nltk
nltk.download('wordnet')
nltk.download('omw-1.4')
from nltk.corpus import wordnet as wn


def eucledian_distance(x, y):   
    return np.sqrt(np.sum((x - y) ** 2))

def cosine_similarity(x, y):
    out = np.dot(x, y) / (np.sqrt(np.dot(x, x)) * np.sqrt(np.dot(y, y)))
    if str(out) != 'nan':
        return out
    return None

def get_vector_for_token(model, token):
    vector = None
    
    splitted = token.split('_')
    token_list = [f'{splitted[i]}_{splitted[i+1]}' for i in range(len(splitted)-1)]
    
    if model.has_index_for(token):
        vector = model.get_vector(token)
    else:
        try:
            vector = model.get_mean_vector(token_list)
        except ValueError:
            return None
    return vector

def compute_metric(func, vector1, vector2):
    if vector1 is not None and vector2 is not None:
        return func(vector1, vector2)
    else:
        return None

def compute_positive_cos(x, y):
    cos_sim = cosine_similarity(x, y)
    if cos_sim:
        return (cos_sim + 1) / 2
    else:
        return None

def addition_metric(substitute, target, context):
    substitute_target_cos = compute_metric(cosine_similarity, substitute, target)
    if not substitute_target_cos:
        return None
    if not context:
        return None

    context_vectors = []
    for context_tk in context:
        substitute_context_cos = compute_metric(cosine_similarity, substitute, context_tk)
        if substitute_context_cos:
            context_vectors.append(substitute_context_cos)
    sum_of_context_vectors = np.sum(context_vectors)
    
    metric = (substitute_target_cos + sum_of_context_vectors) / (len(context) + 1)
    return metric

def balanced_addition_metric(substitute, target, context):
    substitute_target_cos = compute_metric(cosine_similarity, substitute, target)
    if not substitute_target_cos:
        return None
    if not context:
        return None

    context_vectors = []
    for context_tk in context:
        substitute_context_cos = compute_metric(cosine_similarity, substitute, context_tk)
        if substitute_context_cos:
            context_vectors.append(substitute_context_cos)
    sum_of_context_vectors = np.sum(context_vectors)

    context_len = len(context)
    metric = (context_len * substitute_target_cos + sum_of_context_vectors) / (2 * context_len)
    return metric

def multiplication_metric(substitute, target, context):
    substitute_target_cos = compute_metric(compute_positive_cos, substitute, target)
    if not substitute_target_cos:
        return None
    if not context:
        return None
        
    context_vectors = []
    for context_tk in context:
        substitute_context_positive_cos = compute_metric(compute_positive_cos, substitute, context_tk)
        if substitute_context_positive_cos:
            context_vectors.append(substitute_context_positive_cos)
    prod_of_context_vectors = np.prod(context_vectors)
    try:
        metric = pow((substitute_target_cos + prod_of_context_vectors), 1 / (len(context) + 1))
    except ValueError:
        return None
    return metric

def balanced_multiplication_metric(substitute, target, context):
    substitute_target_cos = compute_metric(compute_positive_cos, substitute, target)
    if not substitute_target_cos:
        return None
    if not context:
        return None
        
    context_vectors = []
    for context_tk in context:
        substitute_context_positive_cos = compute_metric(compute_positive_cos, substitute, context_tk)
        if substitute_context_positive_cos:
            context_vectors.append(substitute_context_positive_cos)
    prod_of_context_vectors = np.prod(context_vectors)
    
    context_len = len(context)
    try:
        metric = pow((pow(substitute_target_cos, context_len) + prod_of_context_vectors), 1 / (2 * context_len))
    except ValueError:
        return None
    return metric

def bind_phrases(context_list):
    context = []
    previous_was_phrase = False
    for i in range(len(context_list)-1):
        phrase_candidate = f'{context_list[i]}_{context_list[i+1]}'
        if phrase_candidate in PHRASES and not previous_was_phrase:
            context.append(phrase_candidate)
            previous_was_phrase = True
        else:
            if not previous_was_phrase:
                context.append(context_list[i])
            previous_was_phrase = False
    if context_list:
        if not context:
            context.append(context_list[-1])
        elif not context_list[-1] in context[-1]:
            context.append(context_list[-1])
    return context

def get_context_windows(doc, target_text, window_size):
    sentence_str = doc.text
    sentence_masked = sentence_str.lower().replace(target_text.lower().strip(), ' [MASK] ')
    alpha_tokens_lemma_pos = [f'{tk.lemma_.lower()}_{tk.pos_}' for tk in nlp(sentence_masked) if tk.text.isalpha()]
    alpha_tokens_lemma_pos_no_stop = [f'{tk.lemma_.lower()}_{tk.pos_}' for tk in nlp(sentence_masked) if tk.text.isalpha() and not tk.is_stop]
    try:
        mask_token_index = alpha_tokens_lemma_pos.index('mask_NUM')
        mask_token_index_no_stop = alpha_tokens_lemma_pos_no_stop.index('mask_NUM')
    except ValueError:
        return None

    left_border = max(mask_token_index-window_size, 0)
    right_border = min(mask_token_index+window_size, len(alpha_tokens_lemma_pos))
    l_context = alpha_tokens_lemma_pos[left_border:mask_token_index]
    r_context = alpha_tokens_lemma_pos[mask_token_index+1:right_border+1]

    left_border_no_stop = max(mask_token_index_no_stop-window_size, 0)
    right_border_no_stop = min(mask_token_index_no_stop+window_size, len(alpha_tokens_lemma_pos_no_stop))
    l_context_no_stop = alpha_tokens_lemma_pos_no_stop[left_border_no_stop:mask_token_index_no_stop]
    r_context_no_stop = alpha_tokens_lemma_pos_no_stop[mask_token_index_no_stop+1:right_border_no_stop+1]
    return (bind_phrases(l_context) + bind_phrases(r_context), bind_phrases(l_context_no_stop) + bind_phrases(r_context_no_stop))

def get_context_linked_words(doc, target_position, target_text):
    answer_list = target_text.split(' ')
    context_words = []
    for tk in doc:
        if tk.text.isalpha():
            if (tk.text in answer_list and abs(target_position - tk.idx) <= sum([len(t) for t in answer_list])):
                context_words.extend([t for t in tk.subtree if t.text.isalpha() and not t.is_stop])
                context_words.extend([t for t in tk.children if t.text.isalpha() and not t.is_stop])
                context_words.extend([t for t in tk.ancestors if t.text.isalpha() and not t.is_stop])
    context_words = [(tk, f'{tk.lemma_}_{tk.pos_}') for tk in sorted(set(context_words), key=lambda tk: tk.i) if tk.text not in answer_list]
    context = []
    previous_was_phrase = False
    for i in range(len(context_words)-1):
        phrase_candidate = f'{context_words[i][1]}_{context_words[i+1][1]}'
        if phrase_candidate in PHRASES and not previous_was_phrase and abs(context_words[i][0].i - context_words[i+1][0].i) <=1:
            context.append(phrase_candidate)
            previous_was_phrase = True
        else:
            if not previous_was_phrase:
                context.append(context_words[i][1])
    if context and context_words:
        if not context_words[-1][1] in context[-1]:
            context.append(context_words[-1][1])
    elif context_words:
        context.append(context_words[-1][1])
    return context
 
def get_word_net_similarity(token1, token2, metric):
    token1_list = token1.split('_')[::2]
    token2_list = token2.split('_')[::2]
    data = []
    for token1_part in token1_list:
        for syn1 in wn.synsets(token1_part, lang='spa'):
            for token2_part in token2_list:
                for syn2 in wn.synsets(token2_part, lang='spa'):
                    if syn1.pos() == syn2.pos():
                        data.append(metric(syn1, syn2))
    if data:
        data = np.array(data)
        return data.min(), data.max(), data.mean(), data.std()
    else:
        return None, None, None, None   

def compute_all_necessary_metrics(target_lemma, target_text, target_position, substitute_lemma, doc, model_type:str, model=None):

    path_similarity_min, path_similarity_max, path_similarity_mean, path_similarity_std = get_word_net_similarity(target_lemma, substitute_lemma, wn.path_similarity)
    wup_similarity_min, wup_similarity_max, wup_similarity_mean, wup_similarity_std = get_word_net_similarity(target_lemma, substitute_lemma, wn.wup_similarity)
    lch_similarity_min, lch_similarity_max, lch_similarity_mean, lch_similarity_std = get_word_net_similarity(target_lemma, substitute_lemma, wn.lch_similarity)
    
    if model_type == 'bert':
        return (path_similarity_min, path_similarity_max, path_similarity_mean, path_similarity_std, 
                wup_similarity_min, wup_similarity_max, wup_similarity_mean, wup_similarity_std,
                lch_similarity_min, lch_similarity_max, lch_similarity_mean, lch_similarity_std)

    target_vector = get_vector_for_token(model, target_lemma)
    substitute_vector = get_vector_for_token(model, substitute_lemma)

    cosimilarity = compute_metric(cosine_similarity, substitute_vector, target_vector)
    eucledian_similarity = compute_metric(eucledian_distance, substitute_vector, target_vector)

    context_window3, context_window3_no_stop = get_context_windows(doc=doc, target_text=target_text, window_size=3)
    context_window5, context_window5_no_stop = get_context_windows(doc=doc, target_text=target_text, window_size=5)
    context_window_synt = get_context_linked_words(doc, target_position, target_text)

    context_window3 = [get_vector_for_token(model, token) for token in context_window3]
    context_window3_no_stop = [get_vector_for_token(model, token) for token in context_window3_no_stop]
    context_window5 = [get_vector_for_token(model, token) for token in context_window5]
    context_window5_no_stop = [get_vector_for_token(model, token) for token in context_window5_no_stop]
    context_window_synt = [get_vector_for_token(model, token) for token in context_window_synt]

    add_metric_window3 = addition_metric(target_vector, substitute_vector, context_window3)
    bal_add_metric_window3 = balanced_addition_metric(target_vector, substitute_vector, context_window3)
    add_metric_window3_no_stop = addition_metric(target_vector, substitute_vector, context_window3_no_stop)
    bal_add_metric_window3_no_stop = balanced_addition_metric(target_vector, substitute_vector, context_window3_no_stop)

    mult_metric_window3 = multiplication_metric(target_vector, substitute_vector, context_window3)
    bal_mult_metric_window3 = balanced_multiplication_metric(target_vector, substitute_vector, context_window3)
    mult_metric_window3_no_stop = multiplication_metric(target_vector, substitute_vector, context_window3_no_stop)
    bal_mult_metric_window3_no_stop = balanced_multiplication_metric(target_vector, substitute_vector, context_window3_no_stop)

    add_metric_window5 = addition_metric(target_vector, substitute_vector, context_window5)
    bal_add_metric_window5 = balanced_addition_metric(target_vector, substitute_vector, context_window5)
    add_metric_window5_no_stop = addition_metric(target_vector, substitute_vector, context_window5_no_stop)
    bal_add_metric_window5_no_stop = balanced_addition_metric(target_vector, substitute_vector, context_window5_no_stop)

    mult_metric_window5 = multiplication_metric(target_vector, substitute_vector, context_window5)
    bal_mult_metric_window5 = balanced_multiplication_metric(target_vector, substitute_vector, context_window5)
    mult_metric_window5_no_stop = multiplication_metric(target_vector, substitute_vector, context_window5_no_stop)
    bal_mult_metric_window5_no_stop = balanced_multiplication_metric(target_vector, substitute_vector, context_window5_no_stop)

    add_metric_synt = addition_metric(target_vector, substitute_vector, context_window_synt)
    bal_add_metric_synt = balanced_addition_metric(target_vector, substitute_vector, context_window_synt)

    mult_metric_synt = multiplication_metric(target_vector, substitute_vector, context_window_synt)
    bal_mult_metric_synt = balanced_multiplication_metric(target_vector, substitute_vector, context_window_synt)

    return (cosimilarity, eucledian_similarity, 
            add_metric_window3, bal_add_metric_window3, 
            mult_metric_window3, bal_mult_metric_window3, 
            add_metric_window3_no_stop, bal_add_metric_window3_no_stop,
            mult_metric_window3_no_stop, bal_mult_metric_window3_no_stop,
            add_metric_window5, bal_add_metric_window5, 
            mult_metric_window5, bal_mult_metric_window5, 
            add_metric_window5_no_stop, bal_add_metric_window5_no_stop,         
            mult_metric_window5_no_stop, bal_mult_metric_window5_no_stop,
            add_metric_synt, bal_add_metric_synt, 
            mult_metric_synt, bal_mult_metric_synt, 
            path_similarity_min, path_similarity_mean, path_similarity_std, path_similarity_max,
            wup_similarity_min,  wup_similarity_mean, wup_similarity_std, wup_similarity_max,
            lch_similarity_min, lch_similarity_mean, lch_similarity_std, lch_similarity_max)

def make_decision(doc, model_type, scaler, classifier, pos_dict, level, target_lemma, target_text, target_pos, target_position, 
                  substitute_lemma, substitute_pos, model=None, bert_score=None):
    # return True
    metrics = compute_all_necessary_metrics(target_lemma=target_lemma, target_text=target_text, target_position=target_position, 
                                            substitute_lemma=substitute_lemma, doc=doc, model_type=model_type, model=model)
    target_multiword, substitute_multiword = target_lemma.count('_') > 2, substitute_lemma.count('_') > 2
    data = [LEVEL_NUMBERS.get(level), pos_dict.get(target_pos), target_multiword, pos_dict.get(substitute_pos), substitute_multiword] + scaler.transform([metrics]).tolist()[0]
    if model_type == 'bert':
        data = [LEVEL_NUMBERS.get(level), pos_dict.get(target_pos), target_multiword, pos_dict.get(substitute_pos), substitute_multiword, bert_score] + scaler.transform([metrics]).tolist()[0]
    predict = classifier.predict(data)
    return bool(predict)