Spaces:
Running
Running
import string | |
from random import random | |
from random import sample | |
from utilities_language_general.esp_constants import nlp | |
from utilities_language_general.morphology import inflect | |
from utilities_language_general.esp_constants import PHRASES | |
from utilities_language_general.esp_utils import check_token_bert | |
from utilities_language_general.esp_utils import fix_irregular_lemma | |
from utilities_language_general.esp_constants import BAD_USER_TARGET_WORDS | |
from utilities_language_general.esp_utils import get_distractors_from_model_bert | |
class SENTENCE: | |
def __init__(self, original: str, n_sentence: int, max_num_distractors): | |
self.original = original | |
self.n_sentence = n_sentence | |
self.max_num_distractors = max_num_distractors | |
self.parsed = nlp(self.original) | |
self.sentence_lemma_pos = [] | |
self.sentence_phrases = [] | |
self.target_words = [] | |
self.text_with_masked_task = '' | |
def lemmatize_sentence(self): | |
for token in self.parsed: | |
lemma_pos = f'{token.lemma_}_{token.pos_}' | |
if token.pos_ in ('AUX', 'VERB', 'ADJ'): | |
lemma_pos = fix_irregular_lemma(lemma=lemma_pos) | |
self.sentence_lemma_pos.append((lemma_pos, token)) | |
def bind_phrases(self): | |
previous_was_phrase = False | |
for i in range(len(self.sentence_lemma_pos) - 1): | |
phrase_candidate = f'{self.sentence_lemma_pos[i][0]}_{self.sentence_lemma_pos[i + 1][0]}' | |
if phrase_candidate in PHRASES and not previous_was_phrase: | |
# phrase is {phrase: {original_token1: spacy.token, original_token2: spacy.token}} | |
phrase = [ | |
f'{self.sentence_lemma_pos[i][0]}_{self.sentence_lemma_pos[i + 1][0]}', | |
{ | |
'original_token1': self.sentence_lemma_pos[i][1], | |
'original_token2': self.sentence_lemma_pos[i + 1][1] | |
} | |
] | |
self.sentence_phrases.append(phrase) | |
previous_was_phrase = True | |
else: | |
if not previous_was_phrase: | |
self.sentence_phrases.append(self.sentence_lemma_pos[i][1]) | |
previous_was_phrase = False | |
def search_target_words_automatically(self, target_minimum: set, frequency_dict: dict = None): | |
for token in self.sentence_phrases: | |
if isinstance(token, list): # if token is a phrase | |
original_token1 = token[1]['original_token1'] | |
original_token2 = token[1]['original_token2'] | |
original_token1_tags = original_token1.morph.to_dict() | |
original_token2_tags = original_token2.morph.to_dict() | |
tags = dict() | |
if ('haber_AUX' == f'{original_token1.lemma_}_{original_token1.pos_}' | |
and original_token2.pos_ in ('VERB', 'ADJ', 'AUX')): | |
tags['VerbForm'] = 'Compuesto' | |
tags['Mood'] = original_token1_tags.get('Mood') | |
tags['Tense'] = original_token1_tags.get('Tense') | |
tags['Person'] = original_token1_tags.get('Person') | |
tags['Number'] = original_token1_tags.get('Number') | |
tags['Gender'] = None | |
else: | |
tags = {**original_token1_tags, **original_token2_tags} | |
not_ner = True if (original_token1.ent_type == 0 and original_token2.ent_type == 0) else False | |
target_word = { | |
'masked_sentence': self.original.replace(f'{original_token1.text} {original_token2.text}', | |
'[MASK]'), | |
'sentence_number': self.n_sentence, | |
'sentence_text': self.original, | |
'original_text': f'{original_token1.text} {original_token2.text}', | |
'lemma': token[0], | |
'pos': ('phrase', 'phrase'), | |
'gender': tags.get('Gender'), | |
'tags': tags, | |
'position_in_sentence': self.original.find(original_token1.text), | |
'not_named_entity': not_ner, | |
'frequency_in_text': 0 | |
} | |
self.target_words.append(target_word) | |
else: # if token is just a spacy.nlp token | |
if check_token_bert(token=token, current_minimum=target_minimum): | |
tags = token.morph.to_dict() | |
target_word = { | |
'masked_sentence': self.original.replace(token.text, '[MASK]'), | |
'sentence_number': self.n_sentence, | |
'sentence_text': self.original, | |
'original_text': token.text, | |
'lemma': token.lemma_, | |
'pos': ('simple', token.pos_), | |
'gender': tags.get('Gender'), | |
'number_children': len([child for child in token.children]), | |
'tags': tags, | |
'position_in_sentence': self.original.find(token.text), | |
'not_named_entity': True if token.ent_type == 0 else False, | |
'frequency_in_text': frequency_dict.get(token.lemma_, 1), | |
} | |
self.target_words.append(target_word) | |
def search_user_target_words(self, user_target_words: set = None, frequency_dict: dict = None): | |
for _utw in user_target_words: | |
if _utw in self.original: | |
parse_utw = nlp(_utw) | |
if ' ' in _utw: | |
tags = dict() | |
if ('haber_AUX' == f'{parse_utw[0].lemma_}_{parse_utw[0].pos_}' | |
and parse_utw[1].pos_ in ('VERB', 'ADJ', 'AUX')): | |
tags['VerbForm'] = 'Compuesto' | |
tags['Mood'] = parse_utw[0].morph.to_dict().get('Mood') | |
tags['Tense'] = parse_utw[0].morph.to_dict().get('Tense') | |
tags['Person'] = parse_utw[0].morph.to_dict().get('Person') | |
tags['Number'] = parse_utw[0].morph.to_dict().get('Number') | |
tags['Gender'] = None | |
else: | |
tags = {**parse_utw[0].morph.to_dict(), **parse_utw[1].morph.to_dict()} | |
user_target_word_lemma = '_'.join([f'{token.lemma_}_{token.pos_}' for token in parse_utw]) | |
user_target_word_pos = 'phrase' | |
user_target_word_tags = tags | |
not_ner = True if (parse_utw[0].ent_type == 0 and parse_utw[1].ent_type == 0) else False | |
else: | |
user_target_word_lemma = f'{parse_utw[0].lemma_}_{parse_utw[0].pos_}' | |
user_target_word_pos = ('simple', parse_utw[0].pos_) | |
user_target_word_tags = parse_utw[0].morph.to_dict() | |
not_ner = parse_utw[0].ent_type == 0 | |
target_word = { | |
'masked_sentence': self.original.replace(_utw, '[MASK]'), | |
'sentence_number': self.n_sentence, | |
'sentence_text': self.original, | |
'original_text': _utw, | |
'lemma': user_target_word_lemma, | |
'pos': user_target_word_pos, | |
'gender': user_target_word_tags.get('Gender'), | |
'tags': user_target_word_tags, | |
'position_in_sentence': self.original.find(_utw), | |
'not_named_entity': not_ner, | |
'frequency_in_text': frequency_dict.get(user_target_word_lemma, 1) | |
} | |
self.target_words.append(target_word) | |
def search_target_words(self, target_words_automatic_mode: bool, target_minimum, | |
user_target_words: set = None, | |
frequency_dict: dict = None): | |
if target_words_automatic_mode: | |
self.search_target_words_automatically(target_minimum=target_minimum, | |
frequency_dict=frequency_dict) | |
else: | |
self.search_user_target_words(user_target_words=user_target_words, | |
frequency_dict=frequency_dict) | |
def filter_target_words(self, target_words_automatic_mode): | |
c_position = 0 | |
bad_target_words = [] | |
for target_word in self.target_words: | |
position_difference = 3 if target_words_automatic_mode else 0 | |
if not (target_word['position_in_sentence'] == 0 | |
or abs(target_word['position_in_sentence'] - c_position) >= position_difference): | |
bad_target_words.append(target_word) | |
for btw in bad_target_words: | |
BAD_USER_TARGET_WORDS.append(btw['original_text']) | |
self.target_words.remove(btw) | |
class TASK: | |
def __init__(self, task_data, max_num_distractors): | |
self.task_data = task_data | |
self.distractors = None | |
self.distractors_number = 0 | |
self.bad_target_word = False | |
self.inflected_distractors = None | |
self.pos = task_data['pos'] | |
self.tags = task_data['tags'] | |
self.lemma = task_data['lemma'] | |
self.gender = task_data['gender'] | |
self.max_num_distractors = max_num_distractors | |
self.original_text = task_data['original_text'] | |
self.sentence_text = task_data['sentence_text'] | |
self.sentence_number = task_data['sentence_number'] | |
self.masked_sentence = task_data['masked_sentence'] | |
self.frequency_in_text = task_data['frequency_in_text'] | |
self.position_in_sentence = task_data['position_in_sentence'] | |
self.text_with_masked_task = task_data['text_with_masked_task'] | |
self.result = '' | |
self.variants = [] | |
def __repr__(self): | |
return '\n'.join([f'{key}\t=\t{value}' for key, value in self.__dict__.items()]) | |
def attach_distractors_to_target_word(self, model, global_distractors, distractor_minimum, | |
level_name, max_frequency): | |
pos = self.pos[0] if self.pos[0] == 'phrase' else self.pos[1] | |
# distractors_full_text = get_distractors_from_model_bert(model=model, lemma=self.lemma, pos=pos, | |
# gender=self.gender, level_name=level_name, | |
# text_with_masked_task=self.text_with_masked_task, | |
# global_distractors=global_distractors, | |
# distractor_minimum=distractor_minimum, | |
# max_num_distractors=self.max_num_distractors) | |
distractors_sentence = get_distractors_from_model_bert(model=model, lemma=self.lemma, pos=pos, | |
gender=self.gender, level_name=level_name, | |
text_with_masked_task=self.masked_sentence, | |
global_distractors=global_distractors, | |
distractor_minimum=distractor_minimum, | |
max_num_distractors=self.max_num_distractors) | |
if distractors_sentence is None or self.frequency_in_text > max_frequency: | |
self.bad_target_word = True | |
self.distractors = None | |
else: | |
self.distractors = [d[0] for i, d in enumerate(distractors_sentence) if i < 15] | |
self.distractors_number = len(distractors_sentence) if distractors_sentence is not None else 0 | |
def inflect_distractors(self): | |
inflected_distractors = [] | |
if self.distractors is None: | |
self.bad_target_word = True | |
return | |
for distractor_lemma in self.distractors: | |
if distractor_lemma.count('_') > 1: | |
if distractor_lemma.startswith('haber_'): | |
distractor_lemma = distractor_lemma.split('_')[-2] | |
inflected = inflect(lemma=distractor_lemma, target_pos=self.pos[1], target_tags=self.tags) | |
else: | |
continue | |
else: | |
inflected = inflect(lemma=distractor_lemma, target_pos=self.pos[1], target_tags=self.tags) | |
if inflected is not None: | |
inflected_distractors.append(inflected) | |
num_distractors = min(4, self.max_num_distractors) if self.max_num_distractors >= 4 \ | |
else self.max_num_distractors | |
if len(inflected_distractors) < num_distractors: | |
self.bad_target_word = True | |
else: | |
self.distractors_number = num_distractors | |
self.inflected_distractors = inflected_distractors | |
def sample_distractors(self, num_distractors): | |
if not self.bad_target_word: | |
num_distractors = min(self.distractors_number, num_distractors) if num_distractors >= 4 else num_distractors | |
self.inflected_distractors = sample(self.inflected_distractors[:min(self.distractors_number, 10)], | |
num_distractors) | |
def compile_task(self, max_num_distractors): | |
len_distractors = len(self.inflected_distractors) | |
len_variants = min(len_distractors, max_num_distractors) if max_num_distractors > 4 \ | |
else max_num_distractors | |
letters = (f'({letter})' for letter in string.ascii_lowercase[:len_variants + 1]) | |
try: | |
distractors = sample(self.inflected_distractors, len_variants) + [self.original_text, ] | |
except ValueError: | |
distractors = self.inflected_distractors + [self.original_text, ] | |
tmp_vars = [f'{item[0]} {item[1].replace("_", " ")}'.lower() | |
for item in zip(letters, sorted(distractors, key=lambda _: random()))] | |
self.variants.append((self.original_text, tmp_vars)) | |