Spaces:
Sleeping
Sleeping
a-v-bely
commited on
Commit
·
e5cd1a4
1
Parent(s):
94004b3
utilities_cookies/encrypted_cookie_manager.py
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
import os
|
2 |
import base64
|
3 |
import streamlit as st
|
4 |
-
from typing import Tuple, Optional, MutableMapping
|
5 |
from cryptography import fernet
|
6 |
from cryptography.fernet import Fernet
|
7 |
from cryptography.hazmat.primitives import hashes
|
|
|
8 |
from utilities_cookies.cookie_manager import CookieManager
|
9 |
from cryptography.hazmat.primitives.kdf.pbkdf2 import PBKDF2HMAC
|
10 |
|
|
|
1 |
import os
|
2 |
import base64
|
3 |
import streamlit as st
|
|
|
4 |
from cryptography import fernet
|
5 |
from cryptography.fernet import Fernet
|
6 |
from cryptography.hazmat.primitives import hashes
|
7 |
+
from typing import Tuple, Optional, MutableMapping
|
8 |
from utilities_cookies.cookie_manager import CookieManager
|
9 |
from cryptography.hazmat.primitives.kdf.pbkdf2 import PBKDF2HMAC
|
10 |
|
utilities_database/user_database_widgets.py
CHANGED
@@ -91,8 +91,8 @@ class LogIn:
|
|
91 |
|
92 |
if login_submit_button:
|
93 |
authenticate_user_check = db_utils.check_usr_pass(user_log_in_database=user_login_table,
|
94 |
-
|
95 |
-
|
96 |
|
97 |
if not authenticate_user_check:
|
98 |
st.error("Неверное имя пользователя или пароль!")
|
|
|
91 |
|
92 |
if login_submit_button:
|
93 |
authenticate_user_check = db_utils.check_usr_pass(user_log_in_database=user_login_table,
|
94 |
+
user_name=user_name,
|
95 |
+
password=password)
|
96 |
|
97 |
if not authenticate_user_check:
|
98 |
st.error("Неверное имя пользователя или пароль!")
|
utilities_language_general/esp_utils.py
CHANGED
@@ -113,7 +113,6 @@ def get_distractors_from_model(doc, model, scaler, classifier, pos_dict:dict, ta
|
|
113 |
|
114 |
distractors = []
|
115 |
query = lemma if '_' in lemma else f'{lemma}_{pos}'
|
116 |
-
raw_lemma = query
|
117 |
lemma = '_'.join(lemma.split('_')[::2])
|
118 |
if model.has_index_for(query):
|
119 |
candidates = model.most_similar(query, topn=max_num_distractors + 100)
|
@@ -128,7 +127,7 @@ def get_distractors_from_model(doc, model, scaler, classifier, pos_dict:dict, ta
|
|
128 |
if candidate[0].count('_') == 1 and pos != 'phrase':
|
129 |
distractor_lemma, distractor_pos = candidate[0].split('_')
|
130 |
decision = make_decision(doc, model_type='w2v', model=model, scaler=scaler, classifier=classifier, pos_dict=pos_dict,
|
131 |
-
level=level_name, target_lemma=
|
132 |
substitute_lemma=distractor_lemma, substitute_pos=distractor_pos)
|
133 |
distractor_similarity = candidate[1]
|
134 |
candidate_gender = get_tags(distractor_lemma).get('Gender')
|
@@ -161,7 +160,7 @@ def get_distractors_from_model(doc, model, scaler, classifier, pos_dict:dict, ta
|
|
161 |
distractor_lemma = f'{d1_lemma}_{d2_lemma}'
|
162 |
distractor_similarity = candidate[1]
|
163 |
decision = make_decision(doc, model_type='w2v', model=model, scaler=scaler, classifier=classifier, pos_dict=pos_dict,
|
164 |
-
level=level_name, target_lemma=
|
165 |
substitute_lemma=candidate[0], substitute_pos=d_pos)
|
166 |
condition = (((d1_pos == pos or d2_pos == pos)
|
167 |
or (COMBINE_POS['phrase'][level_name].get(d_pos) is not None and COMBINE_POS['phrase'][level_name].get(pos) is not None
|
|
|
113 |
|
114 |
distractors = []
|
115 |
query = lemma if '_' in lemma else f'{lemma}_{pos}'
|
|
|
116 |
lemma = '_'.join(lemma.split('_')[::2])
|
117 |
if model.has_index_for(query):
|
118 |
candidates = model.most_similar(query, topn=max_num_distractors + 100)
|
|
|
127 |
if candidate[0].count('_') == 1 and pos != 'phrase':
|
128 |
distractor_lemma, distractor_pos = candidate[0].split('_')
|
129 |
decision = make_decision(doc, model_type='w2v', model=model, scaler=scaler, classifier=classifier, pos_dict=pos_dict,
|
130 |
+
level=level_name, target_lemma=query, target_text=target_text, target_pos=pos, target_position=lemma_index,
|
131 |
substitute_lemma=distractor_lemma, substitute_pos=distractor_pos)
|
132 |
distractor_similarity = candidate[1]
|
133 |
candidate_gender = get_tags(distractor_lemma).get('Gender')
|
|
|
160 |
distractor_lemma = f'{d1_lemma}_{d2_lemma}'
|
161 |
distractor_similarity = candidate[1]
|
162 |
decision = make_decision(doc, model_type='w2v', model=model, scaler=scaler, classifier=classifier, pos_dict=pos_dict,
|
163 |
+
level=level_name, target_lemma=query, target_text=target_text, target_pos=pos, target_position=lemma_index,
|
164 |
substitute_lemma=candidate[0], substitute_pos=d_pos)
|
165 |
condition = (((d1_pos == pos or d2_pos == pos)
|
166 |
or (COMBINE_POS['phrase'][level_name].get(d_pos) is not None and COMBINE_POS['phrase'][level_name].get(pos) is not None
|