aa1223 commited on
Commit
582af95
·
verified ·
1 Parent(s): 0d4a898

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -8
app.py CHANGED
@@ -1,24 +1,19 @@
1
- # from google.colab import drive
2
- # drive.mount('/content/drive')
3
-
4
- # import gradio as gr
5
  import gradio as gr
6
  import webbrowser
7
  from threading import Timer
8
  import torch
9
- import torch.nn.functional as F
10
  from facenet_pytorch import InceptionResnetV1
11
  import cv2
12
- from PIL import Image
13
  import numpy as np
14
  import warnings
 
15
  warnings.filterwarnings("ignore")
16
 
17
  DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
18
 
19
  model = InceptionResnetV1(pretrained="vggface2", classify=True, num_classes=1).to(DEVICE).eval()
20
 
21
- # checkpoint_path = "/content/drive/MyDrive/resnetinceptionv1_epoch_32.pth"
22
  checkpoint_path = "resnetinceptionv1_epoch_32.pth"
23
  checkpoint = torch.load(checkpoint_path, map_location=DEVICE)
24
  if 'model_state_dict' in checkpoint:
@@ -40,7 +35,8 @@ def create_montage(frames, size=(512, 512)):
40
  thumb_size = (size[0] // montage_grid, size[1] // montage_grid)
41
 
42
  for i, frame in enumerate(frames):
43
- thumbnail = frame.resize(thumb_size, Image.ANTIALIAS)
 
44
  x_offset = (i % montage_grid) * thumb_size[0]
45
  y_offset = (i // montage_grid) * thumb_size[1]
46
  montage.paste(thumbnail, (x_offset, y_offset))
 
 
 
 
 
1
  import gradio as gr
2
  import webbrowser
3
  from threading import Timer
4
  import torch
 
5
  from facenet_pytorch import InceptionResnetV1
6
  import cv2
7
+ from PIL import Image, ImageOps
8
  import numpy as np
9
  import warnings
10
+
11
  warnings.filterwarnings("ignore")
12
 
13
  DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
14
 
15
  model = InceptionResnetV1(pretrained="vggface2", classify=True, num_classes=1).to(DEVICE).eval()
16
 
 
17
  checkpoint_path = "resnetinceptionv1_epoch_32.pth"
18
  checkpoint = torch.load(checkpoint_path, map_location=DEVICE)
19
  if 'model_state_dict' in checkpoint:
 
35
  thumb_size = (size[0] // montage_grid, size[1] // montage_grid)
36
 
37
  for i, frame in enumerate(frames):
38
+ # Updated resize method
39
+ thumbnail = ImageOps.fit(frame, thumb_size, Image.Resampling.LANCZOS)
40
  x_offset = (i % montage_grid) * thumb_size[0]
41
  y_offset = (i // montage_grid) * thumb_size[1]
42
  montage.paste(thumbnail, (x_offset, y_offset))