File size: 7,040 Bytes
4b6a001
 
 
 
e8ef8e8
22d466a
4b6a001
c200fda
e8ef8e8
 
 
 
 
c200fda
4b6a001
e8ef8e8
 
 
 
 
 
 
 
 
 
 
 
4b6a001
 
e8ef8e8
4b6a001
e8ef8e8
 
 
 
 
 
4b6a001
 
 
 
 
 
 
e8ef8e8
4b6a001
 
 
 
e8ef8e8
 
 
 
 
 
 
c68418d
0d119a8
 
 
 
 
 
 
 
 
e8ef8e8
 
 
 
 
 
 
c200fda
4b6a001
e8ef8e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c200fda
 
 
 
e8ef8e8
c200fda
 
 
 
 
e8ef8e8
c200fda
 
 
 
 
 
 
2daec1f
c200fda
2daec1f
 
c200fda
 
 
 
 
 
e8ef8e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
071497b
 
 
 
e8ef8e8
 
 
 
2daec1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c200fda
2daec1f
c200fda
 
 
e8ef8e8
 
 
2daec1f
 
e8ef8e8
 
 
 
 
 
 
4b6a001
 
 
 
 
e8ef8e8
 
f16fd05
e8ef8e8
4b6a001
 
c303ed7
c200fda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import gradio as gr
import torch
from PIL import Image
import numpy as np
import cv2
from transformers import AutoImageProcessor, AutoModelForImageClassification

# 加载检测模型
models = {
    "model1": {
        "name": "umm-maybe/AI-image-detector",
        "processor": None,
        "model": None,
        "weight": 1.0
    }
}

# 初始化模型
for key in models:
    try:
        models[key]["processor"] = AutoImageProcessor.from_pretrained(models[key]["name"])
        models[key]["model"] = AutoModelForImageClassification.from_pretrained(models[key]["name"])
        print(f"成功加载模型: {models[key]['name']}")
    except Exception as e:
        print(f"加载模型 {models[key]['name']} 失败: {str(e)}")
        models[key]["processor"] = None
        models[key]["model"] = None

def analyze_image_features(image):
    # 转换为OpenCV格式
    img_array = np.array(image)
    if len(img_array.shape) == 3 and img_array.shape[2] == 3:
        img_cv = cv2.cvtColor(img_array, cv2.COLOR_RGB2BGR)
    else:
        img_cv = img_array
    
    features = {}
    
    # 基本特征
    features["width"] = image.width
    features["height"] = image.height
    features["aspect_ratio"] = image.width / max(1, image.height)
    
    # 颜色分析
    if len(img_array.shape) == 3:
        features["avg_red"] = float(np.mean(img_array[:,:,0]))
        features["avg_green"] = float(np.mean(img_array[:,:,1]))
        features["avg_blue"] = float(np.mean(img_array[:,:,2]))
    
    # 边缘一致性分析
    edges = cv2.Canny(img_cv, 100, 200)
    features["edge_density"] = float(np.sum(edges > 0) / (image.width * image.height))
    
    # 纹理分析 - 使用灰度共生矩阵
    if len(img_array.shape) == 3:
        gray = cv2.cvtColor(img_cv, cv2.COLOR_BGR2GRAY)
        from skimage.feature import graycomatrix, graycoprops
        
        # 计算GLCM
        distances = [5]
        angles = [0, np.pi/4, np.pi/2, 3*np.pi/4]
        glcm = graycomatrix(gray, distances=distances, angles=angles, symmetric=True, normed=True)
        
        # 计算GLCM属性
        features["texture_contrast"] = float(np.mean(graycoprops(glcm, 'contrast')[0]))
        features["texture_homogeneity"] = float(np.mean(graycoprops(glcm, 'homogeneity')[0]))
    
    # 噪声分析
    if len(img_array.shape) == 3:
        blurred = cv2.GaussianBlur(img_cv, (5, 5), 0)
        noise = cv2.absdiff(img_cv, blurred)
        features["noise_level"] = float(np.mean(noise))
    
    return features

def detect_ai_image(image):
    if image is None:
        return {"error": "未提供图像"}
    
    results = {}
    valid_models = 0
    weighted_ai_probability = 0
    
    # 使用每个模型进行预测
    for key, model_info in models.items():
        if model_info["processor"] is not None and model_info["model"] is not None:
            try:
                # 处理图像
                inputs = model_info["processor"](images=image, return_tensors="pt")
                with torch.no_grad():
                    outputs = model_info["model"](**inputs)
                
                # 获取预测结果
                logits = outputs.logits
                predicted_class_idx = logits.argmax(-1).item()
                
                # 获取概率
                probabilities = torch.nn.functional.softmax(logits, dim=-1)
                
                # 确定AI生成概率
                ai_label_idx = None
                human_label_idx = None
                
                for idx, label in model_info["model"].config.id2label.items():
                    label_lower = label.lower()
                    if "ai" in label_lower or "generated" in label_lower or "fake" in label_lower:
                        ai_label_idx = idx
                    if "human" in label_lower or "real" in label_lower:
                        human_label_idx = idx
                
                # 修改后的标签解释逻辑
                if human_label_idx is not None:
                    # 反转解释,将human标签视为AI生成的指标
                    ai_probability = float(probabilities[0][human_label_idx].item())
                elif ai_label_idx is not None:
                    # 如果有AI标签
                    ai_probability = float(probabilities[0][ai_label_idx].item())
                else:
                    # 默认使用索引1作为AI标签
                    ai_probability = float(probabilities[0][1].item())
                
                # 添加到结果
                results[key] = {
                    "model_name": model_info["name"],
                    "ai_probability": ai_probability,
                    "predicted_class": model_info["model"].config.id2label[predicted_class_idx]
                }
                
                # 累加加权概率
                weighted_ai_probability += ai_probability * model_info["weight"]
                valid_models += 1
            
            except Exception as e:
                results[key] = {
                    "model_name": model_info["name"],
                    "error": str(e)
                }
    
    # 计算最终加权概率
    if valid_models > 0:
        final_ai_probability = weighted_ai_probability / sum(m["weight"] for k, m in models.items() if m["processor"] is not None and m["model"] is not None)
    else:
        return {"error": "所有模型加载失败"}
    
    # 分析图像特征
    image_features = analyze_image_features(image)
    
    # 应用特征权重调整AI概率
    adjusted_probability = final_ai_probability
    
    # 低边缘密度通常表示AI生成
    if image_features["edge_density"] < 0.01:
        adjusted_probability += 0.2
    
    # 高纹理均匀性通常表示AI生成
    if image_features["texture_homogeneity"] > 0.5:
        adjusted_probability += 0.1
    
    # 低噪声水平通常表示AI生成
    if image_features["noise_level"] < 0.5:
        adjusted_probability += 0.1
    
    # 确保概率在0-1范围内
    adjusted_probability = min(1.0, max(0.0, adjusted_probability))
    
    # 调整后的阈值判断
    if adjusted_probability > 0.5:  # 降低AI判定阈值
        confidence_level = "高概率AI生成"
    elif adjusted_probability < 0.2:  # 提高人类判定要求
        confidence_level = "高概率人类创作"
    else:
        confidence_level = "无法确定"
    
    # 构建最终结果
    final_result = {
        "ai_probability": adjusted_probability,
        "original_ai_probability": final_ai_probability,
        "confidence_level": confidence_level,
        "individual_model_results": results,
        "features": image_features
    }
    
    return final_result

# 创建Gradio界面
iface = gr.Interface(
    fn=detect_ai_image,
    inputs=gr.Image(type="pil"),
    outputs=gr.JSON(),
    title="增强型AI图像检测API",
    description="多模型集成检测图像是否由AI生成",
    examples=None,
    allow_flagging="never"
)

iface.launch()