File size: 19,867 Bytes
4b6a001
 
 
 
e8ef8e8
22d466a
4b6a001
d2c6cf8
e8ef8e8
 
 
 
 
d2c6cf8
 
 
 
 
 
 
 
 
 
 
 
 
4b6a001
e8ef8e8
 
 
 
 
 
 
 
 
 
 
 
4b6a001
9521c70
 
 
 
d2c6cf8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9521c70
d2c6cf8
9521c70
 
d2c6cf8
9521c70
d2c6cf8
 
9521c70
 
d2c6cf8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9521c70
 
 
 
4b6a001
d2c6cf8
e8ef8e8
4b6a001
e8ef8e8
 
 
 
 
 
4b6a001
 
 
 
 
 
 
e8ef8e8
4b6a001
 
 
d2c6cf8
 
 
 
 
 
 
4b6a001
e8ef8e8
 
 
 
 
 
 
c68418d
0d119a8
 
 
 
 
 
 
 
 
d2c6cf8
 
e8ef8e8
 
 
 
 
 
d2c6cf8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8ef8e8
c200fda
4b6a001
9521c70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2c6cf8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9521c70
 
 
 
 
d2c6cf8
 
 
 
 
 
 
 
 
 
 
9521c70
 
d2c6cf8
9521c70
 
d2c6cf8
 
 
 
 
 
9521c70
d2c6cf8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9521c70
 
 
 
 
 
 
 
d2c6cf8
9521c70
 
 
e8ef8e8
d2c6cf8
e8ef8e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2c6cf8
c200fda
d2c6cf8
 
e8ef8e8
 
d2c6cf8
e8ef8e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
071497b
 
 
 
e8ef8e8
 
 
 
9521c70
 
 
 
 
 
2daec1f
 
 
9521c70
 
 
 
 
2daec1f
9521c70
 
 
 
 
2daec1f
9521c70
 
2daec1f
 
9521c70
 
d2c6cf8
 
2daec1f
 
 
9521c70
 
 
 
 
 
d2c6cf8
 
9521c70
 
 
e8ef8e8
 
 
2daec1f
9521c70
d2c6cf8
9521c70
d2c6cf8
 
 
9521c70
e8ef8e8
 
 
 
 
 
9521c70
 
 
 
4b6a001
 
 
 
 
e8ef8e8
d2c6cf8
f16fd05
e8ef8e8
4b6a001
 
c303ed7
c200fda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
import gradio as gr
import torch
from PIL import Image
import numpy as np
import cv2
from transformers import AutoImageProcessor, AutoModelForImageClassification

# 加载多个检测模型
models = {
    "model1": {
        "name": "umm-maybe/AI-image-detector",
        "processor": None,
        "model": None,
        "weight": 0.5
    },
    "model2": {
        "name": "microsoft/resnet-50",  # 通用图像分类模型
        "processor": None,
        "model": None,
        "weight": 0.25
    },
    "model3": {
        "name": "google/vit-base-patch16-224",  # Vision Transformer模型
        "processor": None,
        "model": None,
        "weight": 0.25
    }
}

# 初始化模型
for key in models:
    try:
        models[key]["processor"] = AutoImageProcessor.from_pretrained(models[key]["name"])
        models[key]["model"] = AutoModelForImageClassification.from_pretrained(models[key]["name"])
        print(f"成功加载模型: {models[key]['name']}")
    except Exception as e:
        print(f"加载模型 {models[key]['name']} 失败: {str(e)}")
        models[key]["processor"] = None
        models[key]["model"] = None


## 2. 模型输出处理

python
def process_model_output(model_info, outputs, probabilities):
    """处理不同模型的输出,统一返回AI生成概率"""
    model_name = model_info["name"].lower()
    
    # 针对不同模型的特殊处理
    if "ai-image-detector" in model_name:
        # umm-maybe/AI-image-detector模型特殊处理
        # 检查标签
        ai_label_idx = None
        human_label_idx = None
        
        for idx, label in model_info["model"].config.id2label.items():
            label_lower = label.lower()
            if "ai" in label_lower or "generated" in label_lower or "fake" in label_lower:
                ai_label_idx = idx
            if "human" in label_lower or "real" in label_lower:
                human_label_idx = idx
        
        # 修正后的标签解释逻辑
        if human_label_idx is not None:
            # 如果预测为human,则AI概率应该低
            ai_probability = 1 - float(probabilities[0][human_label_idx].item())
        elif ai_label_idx is not None:
            # 如果预测为AI,则AI概率应该高
            ai_probability = float(probabilities[0][ai_label_idx].item())
        else:
            # 默认情况
            ai_probability = 0.5
    
    elif "resnet" in model_name:
        # 通用图像分类模型,使用简单启发式方法
        predicted_class_idx = outputs.logits.argmax(-1).item()
        # 检查是否有与AI相关的类别
        predicted_class = model_info["model"].config.id2label[predicted_class_idx].lower()
        
        # 简单启发式:检查类别名称是否包含与AI生成相关的关键词
        ai_keywords = ["artificial", "generated", "synthetic", "fake", "computer"]
        for keyword in ai_keywords:
            if keyword in predicted_class:
                return float(probabilities[0][predicted_class_idx].item())
        
        # 如果没有明确的AI类别,返回中等概率
        return 0.5
    
    elif "vit" in model_name:
        # Vision Transformer模型
        predicted_class_idx = outputs.logits.argmax(-1).item()
        # 同样检查类别名称
        predicted_class = model_info["model"].config.id2label[predicted_class_idx].lower()
        
        # 简单启发式:检查类别名称是否包含与AI生成相关的关键词
        ai_keywords = ["artificial", "generated", "synthetic", "fake", "computer"]
        for keyword in ai_keywords:
            if keyword in predicted_class:
                return float(probabilities[0][predicted_class_idx].item())
        
        # 如果没有明确的AI类别,返回中等概率
        return 0.5
    
    # 默认处理
    predicted_class_idx = outputs.logits.argmax(-1).item()
    predicted_class = model_info["model"].config.id2label[predicted_class_idx].lower()
    
    if "ai" in predicted_class or "generated" in predicted_class or "fake" in predicted_class:
        return float(probabilities[0][predicted_class_idx].item())
    else:
        return 1 - float(probabilities[0][predicted_class_idx].item())
    
    return ai_probability


## 3. 图像特征分析

python
def analyze_image_features(image):
    """分析图像特征"""
    # 转换为OpenCV格式
    img_array = np.array(image)
    if len(img_array.shape) == 3 and img_array.shape[2] == 3:
        img_cv = cv2.cvtColor(img_array, cv2.COLOR_RGB2BGR)
    else:
        img_cv = img_array
    
    features = {}
    
    # 基本特征
    features["width"] = image.width
    features["height"] = image.height
    features["aspect_ratio"] = image.width / max(1, image.height)
    
    # 颜色分析
    if len(img_array.shape) == 3:
        features["avg_red"] = float(np.mean(img_array[:,:,0]))
        features["avg_green"] = float(np.mean(img_array[:,:,1]))
        features["avg_blue"] = float(np.mean(img_array[:,:,2]))
        
        # 颜色标准差 - 用于检测颜色分布是否自然
        features["color_std"] = float(np.std([
            features["avg_red"], 
            features["avg_green"], 
            features["avg_blue"]
        ]))
    
    # 边缘一致性分析
    edges = cv2.Canny(img_cv, 100, 200)
    features["edge_density"] = float(np.sum(edges > 0) / (image.width * image.height))
    
    # 纹理分析 - 使用灰度共生矩阵
    if len(img_array.shape) == 3:
        gray = cv2.cvtColor(img_cv, cv2.COLOR_BGR2GRAY)
        from skimage.feature import graycomatrix, graycoprops
        
        # 计算GLCM
        distances = [5]
        angles = [0, np.pi/4, np.pi/2, 3*np.pi/4]
        glcm = graycomatrix(gray, distances=distances, angles=angles, symmetric=True, normed=True)
        
        # 计算GLCM属性
        features["texture_contrast"] = float(np.mean(graycoprops(glcm, 'contrast')[0]))
        features["texture_homogeneity"] = float(np.mean(graycoprops(glcm, 'homogeneity')[0]))
        features["texture_correlation"] = float(np.mean(graycoprops(glcm, 'correlation')[0]))
        features["texture_energy"] = float(np.mean(graycoprops(glcm, 'energy')[0]))
    
    # 噪声分析
    if len(img_array.shape) == 3:
        blurred = cv2.GaussianBlur(img_cv, (5, 5), 0)
        noise = cv2.absdiff(img_cv, blurred)
        features["noise_level"] = float(np.mean(noise))
        
        # 噪声分布 - 用于检测噪声是否自然
        features["noise_std"] = float(np.std(noise))
    
    # 对称性分析 - AI生成图像通常有更高的对称性
    if img_cv.shape[1] % 2 == 0:  # 确保宽度是偶数
        left_half = img_cv[:, :img_cv.shape[1]//2]
        right_half = cv2.flip(img_cv[:, img_cv.shape[1]//2:], 1)
        if left_half.shape == right_half.shape:
            h_symmetry = 1 - float(np.mean(cv2.absdiff(left_half, right_half)) / 255)
            features["horizontal_symmetry"] = h_symmetry
    
    if img_cv.shape[0] % 2 == 0:  # 确保高度是偶数
        top_half = img_cv[:img_cv.shape[0]//2, :]
        bottom_half = cv2.flip(img_cv[img_cv.shape[0]//2:, :], 0)
        if top_half.shape == bottom_half.shape:
            v_symmetry = 1 - float(np.mean(cv2.absdiff(top_half, bottom_half)) / 255)
            features["vertical_symmetry"] = v_symmetry
    
    # 频率域分析 - 检测不自然的频率分布
    if len(img_array.shape) == 3:
        gray = cv2.cvtColor(img_cv, cv2.COLOR_BGR2GRAY)
        f_transform = np.fft.fft2(gray)
        f_shift = np.fft.fftshift(f_transform)
        magnitude = np.log(np.abs(f_shift) + 1)
        
        # 计算高频和低频成分的比例
        h, w = magnitude.shape
        center_h, center_w = h // 2, w // 2
        
        # 低频区域 (中心区域)
        low_freq_region = magnitude[center_h-h//8:center_h+h//8, center_w-w//8:center_w+w//8]
        low_freq_mean = np.mean(low_freq_region)
        
        # 高频区域 (边缘区域)
        high_freq_mean = np.mean(magnitude) - low_freq_mean
        
        features["freq_ratio"] = float(high_freq_mean / max(low_freq_mean, 0.001))
    
    return features


## 4. AI特征检查

python
def check_ai_specific_features(image_features):
    """检查AI生成图像的典型特征"""
    ai_score = 0
    ai_signs = []
    
    # 检查对称性 - AI生成图像通常对称性高
    if "horizontal_symmetry" in image_features and "vertical_symmetry" in image_features:
        avg_symmetry = (image_features["horizontal_symmetry"] + image_features["vertical_symmetry"]) / 2
        if avg_symmetry > 0.7:
            ai_score += 0.3
            ai_signs.append("图像对称性异常高")
    
    # 检查纹理相关性 - AI生成图像通常纹理相关性高
    if "texture_correlation" in image_features and image_features["texture_correlation"] > 0.9:
        ai_score += 0.2
        ai_signs.append("纹理相关性异常高")
    
    # 检查边缘与噪声的关系 - AI生成图像通常边缘清晰但噪声不自然
    if "edge_density" in image_features and "noise_level" in image_features:
        edge_noise_ratio = image_features["edge_density"] / max(image_features["noise_level"], 0.001)
        if edge_noise_ratio < 0.01:
            ai_score += 0.2
            ai_signs.append("边缘与噪声分布不自然")
    
    # 检查颜色平滑度 - AI生成图像通常颜色过渡更平滑
    if "color_std" in image_features and image_features["color_std"] < 10:
        ai_score += 0.2
        ai_signs.append("颜色过渡异常平滑")
    
    # 检查纹理能量 - AI生成图像通常纹理能量分布不自然
    if "texture_energy" in image_features and image_features["texture_energy"] < 0.02:
        ai_score += 0.2
        ai_signs.append("纹理能量分布不自然")
    
    # 检查频率比例 - AI生成图像通常频率分布不自然
    if "freq_ratio" in image_features:
        if image_features["freq_ratio"] < 0.1 or image_features["freq_ratio"] > 2.0:
            ai_score += 0.2
            ai_signs.append("频率分布不自然")
    
    return min(ai_score, 1.0), ai_signs


## 5. PS痕迹检测

python
def detect_photoshop_signs(image_features):
    """检测图像中的PS痕迹"""
    ps_score = 0
    ps_signs = []
    
    # 检查皮肤质感
    if "texture_homogeneity" in image_features:
        if image_features["texture_homogeneity"] > 0.4:
            ps_score += 0.2
            ps_signs.append("皮肤质感过于均匀")
        elif image_features["texture_homogeneity"] > 0.3:
            ps_score += 0.1
            ps_signs.append("皮肤质感较为均匀")
    
    # 检查边缘不自然
    if "edge_density" in image_features:
        if image_features["edge_density"] < 0.01:
            ps_score += 0.2
            ps_signs.append("边缘过于平滑")
        elif image_features["edge_density"] < 0.03:
            ps_score += 0.1
            ps_signs.append("边缘较为平滑")
    
    # 检查颜色不自然
    if "color_std" in image_features:
        if image_features["color_std"] > 50:
            ps_score += 0.2
            ps_signs.append("颜色分布极不自然")
        elif image_features["color_std"] > 30:
            ps_score += 0.1
            ps_signs.append("颜色分布略不自然")
    
    # 检查噪点不一致
    if "noise_level" in image_features and "noise_std" in image_features:
        noise_ratio = image_features["noise_std"] / max(image_features["noise_level"], 0.001)
        if noise_ratio < 0.5:
            ps_score += 0.2
            ps_signs.append("噪点分布不自然")
        elif noise_ratio < 0.7:
            ps_score += 0.1
            ps_signs.append("噪点分布略不自然")
    
    # 检查频率分布不自然
    if "freq_ratio" in image_features:
        if image_features["freq_ratio"] < 0.2:
            ps_score += 0.2
            ps_signs.append("频率分布不自然,可能有过度模糊处理")
        elif image_features["freq_ratio"] > 2.0:
            ps_score += 0.2
            ps_signs.append("频率分布不自然,可能有过度锐化处理")
    
    return min(ps_score, 1.0), ps_signs


## 6. 结果分析与分类

python
def get_detailed_analysis(ai_probability, ps_score, ps_signs, ai_signs, valid_models_count):
    """提供更详细的分析结果"""
    
    # 根据有效模型数量调整置信度描述
    confidence_prefix = ""
    if valid_models_count >= 3:
        confidence_prefix = "极高置信度:"
    elif valid_models_count == 2:
        confidence_prefix = "高置信度:"
    elif valid_models_count == 1:
        confidence_prefix = "中等置信度:"
    
    # 调整后的阈值判断
    if ai_probability > 0.6:  # 降低为0.6
        category = confidence_prefix + "高概率AI生成"
        description = "图像很可能是由AI完全生成,几乎没有真人照片的特征。"
    elif ai_probability > 0.4:  # 降低为0.4
        if ps_score > 0.5:
            category = confidence_prefix + "中等概率AI生成,高概率PS修图"
            description = "图像可能是真人照片经过大量后期处理,或是AI生成后经过修饰的图像。"
        else:
            category = confidence_prefix + "中等概率AI生成"
            description = "图像有较多AI生成的特征,但也保留了一些真实照片的特点。"
    elif ai_probability > 0.3:  # 降低为0.3
        if ps_score > 0.5:
            category = confidence_prefix + "低概率AI生成,高概率PS修图"
            description = "图像更可能是真人照片经过大量后期处理,PS痕迹明显。"
        else:
            category = confidence_prefix + "低概率AI生成"
            description = "图像更可能是真人照片,但有一些AI生成或修饰的特征。"
    else:
        if ps_score > 0.6:
            category = confidence_prefix + "真人照片,重度PS修图"
            description = "图像基本是真人照片,但经过了大量后期处理,修饰痕迹明显。"
        elif ps_score > 0.3:
            category = confidence_prefix + "真人照片,中度PS修图"
            description = "图像是真人照片,有明显的后期处理痕迹。"
        elif ps_score > 0.1:
            category = confidence_prefix + "真人照片,轻度PS修图"
            description = "图像是真人照片,有少量后期处理。"
        else:
            category = confidence_prefix + "高概率真人照片,几乎无修图"
            description = "图像几乎可以确定是未经大量处理的真人照片。"
    
    # 添加具体的PS痕迹描述
    if ps_signs:
        ps_details = "检测到的修图痕迹:" + "、".join(ps_signs)
    else:
        ps_details = "未检测到明显的修图痕迹。"
    
    # 添加AI特征描述
    if ai_signs:
        ai_details = "检测到的AI特征:" + "、".join(ai_signs)
    else:
        ai_details = "未检测到明显的AI生成特征。"
    
    return category, description, ps_details, ai_details


## 7. 主检测函数

python
def detect_ai_image(image):
    """主检测函数"""
    if image is None:
        return {"error": "未提供图像"}
    
    results = {}
    valid_models = 0
    weighted_ai_probability = 0
    
    # 使用每个模型进行预测
    for key, model_info in models.items():
        if model_info["processor"] is not None and model_info["model"] is not None:
            try:
                # 处理图像
                inputs = model_info["processor"](images=image, return_tensors="pt")
                with torch.no_grad():
                    outputs = model_info["model"](**inputs)
                
                # 获取概率
                probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
                
                # 使用适配器处理不同模型的输出
                ai_probability = process_model_output(model_info, outputs, probabilities)
                
                # 添加到结果
                predicted_class_idx = outputs.logits.argmax(-1).item()
                results[key] = {
                    "model_name": model_info["name"],
                    "ai_probability": ai_probability,
                    "predicted_class": model_info["model"].config.id2label[predicted_class_idx]
                }
                
                # 累加加权概率
                weighted_ai_probability += ai_probability * model_info["weight"]
                valid_models += 1
            
            except Exception as e:
                results[key] = {
                    "model_name": model_info["name"],
                    "error": str(e)
                }
    
    # 计算最终加权概率
    if valid_models > 0:
        final_ai_probability = weighted_ai_probability / sum(m["weight"] for k, m in models.items() if m["processor"] is not None and m["model"] is not None)
    else:
        return {"error": "所有模型加载失败"}
    
    # 分析图像特征
    image_features = analyze_image_features(image)
    
    # 检查AI特定特征
    ai_feature_score, ai_signs = check_ai_specific_features(image_features)
    
    # 分析PS痕迹
    ps_score, ps_signs = detect_photoshop_signs(image_features)
    
    # 应用特征权重调整AI概率
    adjusted_probability = final_ai_probability
    
    # 如果AI特征分数高,大幅提高AI概率
    if ai_feature_score > 0.5:
        adjusted_probability = max(adjusted_probability, 0.7)
    elif ai_feature_score > 0.3:
        adjusted_probability = max(adjusted_probability, 0.5)
    
    # 高对称性是AI生成的强烈指标
    if "horizontal_symmetry" in image_features and image_features["horizontal_symmetry"] > 0.7:
        adjusted_probability += 0.15
    if "vertical_symmetry" in image_features and image_features["vertical_symmetry"] > 0.7:
        adjusted_probability += 0.15
    
    # 高纹理相关性通常表示AI生成
    if "texture_correlation" in image_features and image_features["texture_correlation"] > 0.9:
        adjusted_probability += 0.1
    
    # 低边缘密度通常表示AI生成
    if image_features["edge_density"] < 0.01:
        adjusted_probability += 0.1
    
    # 确保概率在0-1范围内
    adjusted_probability = min(1.0, max(0.0, adjusted_probability))
    
    # 如果umm-maybe/AI-image-detector模型的预测与其他模型不一致,增加其权重
    if "model1" in results and "ai_probability" in results["model1"]:
        ai_detector_prob = results["model1"]["ai_probability"]
        # 如果专用AI检测器给出的概率与调整后概率差异大,增加其权重
        if abs(ai_detector_prob - adjusted_probability) > 0.3:
            adjusted_probability = (adjusted_probability + ai_detector_prob * 2) / 3
    
    # 获取详细分析
    category, description, ps_details, ai_details = get_detailed_analysis(
        adjusted_probability, ps_score, ps_signs, ai_signs, valid_models
    )
    
    # 构建最终结果
    final_result = {
        "ai_probability": adjusted_probability,
        "original_ai_probability": final_ai_probability,
        "ps_score": ps_score,
        "ai_feature_score": ai_feature_score,
        "category": category,
        "description": description,
        "ps_details": ps_details,
        "ai_details": ai_details,
        "individual_model_results": results,
        "features": image_features
    }
    
    return final_result


## 8. Gradio界面

python
# 创建Gradio界面
iface = gr.Interface(
    fn=detect_ai_image,
    inputs=gr.Image(type="pil"),
    outputs=gr.JSON(),
    title="增强型AI图像检测API",
    description="多模型集成检测图像是否由AI生成,同时分析PS修图痕迹",
    examples=None,
    allow_flagging="never"
)

iface.launch()