Spaces:
Running
Running
File size: 19,867 Bytes
4b6a001 e8ef8e8 22d466a 4b6a001 d2c6cf8 e8ef8e8 d2c6cf8 4b6a001 e8ef8e8 4b6a001 9521c70 d2c6cf8 9521c70 d2c6cf8 9521c70 d2c6cf8 9521c70 d2c6cf8 9521c70 d2c6cf8 9521c70 4b6a001 d2c6cf8 e8ef8e8 4b6a001 e8ef8e8 4b6a001 e8ef8e8 4b6a001 d2c6cf8 4b6a001 e8ef8e8 c68418d 0d119a8 d2c6cf8 e8ef8e8 d2c6cf8 e8ef8e8 c200fda 4b6a001 9521c70 d2c6cf8 9521c70 d2c6cf8 9521c70 d2c6cf8 9521c70 d2c6cf8 9521c70 d2c6cf8 9521c70 d2c6cf8 9521c70 e8ef8e8 d2c6cf8 e8ef8e8 d2c6cf8 c200fda d2c6cf8 e8ef8e8 d2c6cf8 e8ef8e8 071497b e8ef8e8 9521c70 2daec1f 9521c70 2daec1f 9521c70 2daec1f 9521c70 2daec1f 9521c70 d2c6cf8 2daec1f 9521c70 d2c6cf8 9521c70 e8ef8e8 2daec1f 9521c70 d2c6cf8 9521c70 d2c6cf8 9521c70 e8ef8e8 9521c70 4b6a001 e8ef8e8 d2c6cf8 f16fd05 e8ef8e8 4b6a001 c303ed7 c200fda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 |
import gradio as gr
import torch
from PIL import Image
import numpy as np
import cv2
from transformers import AutoImageProcessor, AutoModelForImageClassification
# 加载多个检测模型
models = {
"model1": {
"name": "umm-maybe/AI-image-detector",
"processor": None,
"model": None,
"weight": 0.5
},
"model2": {
"name": "microsoft/resnet-50", # 通用图像分类模型
"processor": None,
"model": None,
"weight": 0.25
},
"model3": {
"name": "google/vit-base-patch16-224", # Vision Transformer模型
"processor": None,
"model": None,
"weight": 0.25
}
}
# 初始化模型
for key in models:
try:
models[key]["processor"] = AutoImageProcessor.from_pretrained(models[key]["name"])
models[key]["model"] = AutoModelForImageClassification.from_pretrained(models[key]["name"])
print(f"成功加载模型: {models[key]['name']}")
except Exception as e:
print(f"加载模型 {models[key]['name']} 失败: {str(e)}")
models[key]["processor"] = None
models[key]["model"] = None
## 2. 模型输出处理
python
def process_model_output(model_info, outputs, probabilities):
"""处理不同模型的输出,统一返回AI生成概率"""
model_name = model_info["name"].lower()
# 针对不同模型的特殊处理
if "ai-image-detector" in model_name:
# umm-maybe/AI-image-detector模型特殊处理
# 检查标签
ai_label_idx = None
human_label_idx = None
for idx, label in model_info["model"].config.id2label.items():
label_lower = label.lower()
if "ai" in label_lower or "generated" in label_lower or "fake" in label_lower:
ai_label_idx = idx
if "human" in label_lower or "real" in label_lower:
human_label_idx = idx
# 修正后的标签解释逻辑
if human_label_idx is not None:
# 如果预测为human,则AI概率应该低
ai_probability = 1 - float(probabilities[0][human_label_idx].item())
elif ai_label_idx is not None:
# 如果预测为AI,则AI概率应该高
ai_probability = float(probabilities[0][ai_label_idx].item())
else:
# 默认情况
ai_probability = 0.5
elif "resnet" in model_name:
# 通用图像分类模型,使用简单启发式方法
predicted_class_idx = outputs.logits.argmax(-1).item()
# 检查是否有与AI相关的类别
predicted_class = model_info["model"].config.id2label[predicted_class_idx].lower()
# 简单启发式:检查类别名称是否包含与AI生成相关的关键词
ai_keywords = ["artificial", "generated", "synthetic", "fake", "computer"]
for keyword in ai_keywords:
if keyword in predicted_class:
return float(probabilities[0][predicted_class_idx].item())
# 如果没有明确的AI类别,返回中等概率
return 0.5
elif "vit" in model_name:
# Vision Transformer模型
predicted_class_idx = outputs.logits.argmax(-1).item()
# 同样检查类别名称
predicted_class = model_info["model"].config.id2label[predicted_class_idx].lower()
# 简单启发式:检查类别名称是否包含与AI生成相关的关键词
ai_keywords = ["artificial", "generated", "synthetic", "fake", "computer"]
for keyword in ai_keywords:
if keyword in predicted_class:
return float(probabilities[0][predicted_class_idx].item())
# 如果没有明确的AI类别,返回中等概率
return 0.5
# 默认处理
predicted_class_idx = outputs.logits.argmax(-1).item()
predicted_class = model_info["model"].config.id2label[predicted_class_idx].lower()
if "ai" in predicted_class or "generated" in predicted_class or "fake" in predicted_class:
return float(probabilities[0][predicted_class_idx].item())
else:
return 1 - float(probabilities[0][predicted_class_idx].item())
return ai_probability
## 3. 图像特征分析
python
def analyze_image_features(image):
"""分析图像特征"""
# 转换为OpenCV格式
img_array = np.array(image)
if len(img_array.shape) == 3 and img_array.shape[2] == 3:
img_cv = cv2.cvtColor(img_array, cv2.COLOR_RGB2BGR)
else:
img_cv = img_array
features = {}
# 基本特征
features["width"] = image.width
features["height"] = image.height
features["aspect_ratio"] = image.width / max(1, image.height)
# 颜色分析
if len(img_array.shape) == 3:
features["avg_red"] = float(np.mean(img_array[:,:,0]))
features["avg_green"] = float(np.mean(img_array[:,:,1]))
features["avg_blue"] = float(np.mean(img_array[:,:,2]))
# 颜色标准差 - 用于检测颜色分布是否自然
features["color_std"] = float(np.std([
features["avg_red"],
features["avg_green"],
features["avg_blue"]
]))
# 边缘一致性分析
edges = cv2.Canny(img_cv, 100, 200)
features["edge_density"] = float(np.sum(edges > 0) / (image.width * image.height))
# 纹理分析 - 使用灰度共生矩阵
if len(img_array.shape) == 3:
gray = cv2.cvtColor(img_cv, cv2.COLOR_BGR2GRAY)
from skimage.feature import graycomatrix, graycoprops
# 计算GLCM
distances = [5]
angles = [0, np.pi/4, np.pi/2, 3*np.pi/4]
glcm = graycomatrix(gray, distances=distances, angles=angles, symmetric=True, normed=True)
# 计算GLCM属性
features["texture_contrast"] = float(np.mean(graycoprops(glcm, 'contrast')[0]))
features["texture_homogeneity"] = float(np.mean(graycoprops(glcm, 'homogeneity')[0]))
features["texture_correlation"] = float(np.mean(graycoprops(glcm, 'correlation')[0]))
features["texture_energy"] = float(np.mean(graycoprops(glcm, 'energy')[0]))
# 噪声分析
if len(img_array.shape) == 3:
blurred = cv2.GaussianBlur(img_cv, (5, 5), 0)
noise = cv2.absdiff(img_cv, blurred)
features["noise_level"] = float(np.mean(noise))
# 噪声分布 - 用于检测噪声是否自然
features["noise_std"] = float(np.std(noise))
# 对称性分析 - AI生成图像通常有更高的对称性
if img_cv.shape[1] % 2 == 0: # 确保宽度是偶数
left_half = img_cv[:, :img_cv.shape[1]//2]
right_half = cv2.flip(img_cv[:, img_cv.shape[1]//2:], 1)
if left_half.shape == right_half.shape:
h_symmetry = 1 - float(np.mean(cv2.absdiff(left_half, right_half)) / 255)
features["horizontal_symmetry"] = h_symmetry
if img_cv.shape[0] % 2 == 0: # 确保高度是偶数
top_half = img_cv[:img_cv.shape[0]//2, :]
bottom_half = cv2.flip(img_cv[img_cv.shape[0]//2:, :], 0)
if top_half.shape == bottom_half.shape:
v_symmetry = 1 - float(np.mean(cv2.absdiff(top_half, bottom_half)) / 255)
features["vertical_symmetry"] = v_symmetry
# 频率域分析 - 检测不自然的频率分布
if len(img_array.shape) == 3:
gray = cv2.cvtColor(img_cv, cv2.COLOR_BGR2GRAY)
f_transform = np.fft.fft2(gray)
f_shift = np.fft.fftshift(f_transform)
magnitude = np.log(np.abs(f_shift) + 1)
# 计算高频和低频成分的比例
h, w = magnitude.shape
center_h, center_w = h // 2, w // 2
# 低频区域 (中心区域)
low_freq_region = magnitude[center_h-h//8:center_h+h//8, center_w-w//8:center_w+w//8]
low_freq_mean = np.mean(low_freq_region)
# 高频区域 (边缘区域)
high_freq_mean = np.mean(magnitude) - low_freq_mean
features["freq_ratio"] = float(high_freq_mean / max(low_freq_mean, 0.001))
return features
## 4. AI特征检查
python
def check_ai_specific_features(image_features):
"""检查AI生成图像的典型特征"""
ai_score = 0
ai_signs = []
# 检查对称性 - AI生成图像通常对称性高
if "horizontal_symmetry" in image_features and "vertical_symmetry" in image_features:
avg_symmetry = (image_features["horizontal_symmetry"] + image_features["vertical_symmetry"]) / 2
if avg_symmetry > 0.7:
ai_score += 0.3
ai_signs.append("图像对称性异常高")
# 检查纹理相关性 - AI生成图像通常纹理相关性高
if "texture_correlation" in image_features and image_features["texture_correlation"] > 0.9:
ai_score += 0.2
ai_signs.append("纹理相关性异常高")
# 检查边缘与噪声的关系 - AI生成图像通常边缘清晰但噪声不自然
if "edge_density" in image_features and "noise_level" in image_features:
edge_noise_ratio = image_features["edge_density"] / max(image_features["noise_level"], 0.001)
if edge_noise_ratio < 0.01:
ai_score += 0.2
ai_signs.append("边缘与噪声分布不自然")
# 检查颜色平滑度 - AI生成图像通常颜色过渡更平滑
if "color_std" in image_features and image_features["color_std"] < 10:
ai_score += 0.2
ai_signs.append("颜色过渡异常平滑")
# 检查纹理能量 - AI生成图像通常纹理能量分布不自然
if "texture_energy" in image_features and image_features["texture_energy"] < 0.02:
ai_score += 0.2
ai_signs.append("纹理能量分布不自然")
# 检查频率比例 - AI生成图像通常频率分布不自然
if "freq_ratio" in image_features:
if image_features["freq_ratio"] < 0.1 or image_features["freq_ratio"] > 2.0:
ai_score += 0.2
ai_signs.append("频率分布不自然")
return min(ai_score, 1.0), ai_signs
## 5. PS痕迹检测
python
def detect_photoshop_signs(image_features):
"""检测图像中的PS痕迹"""
ps_score = 0
ps_signs = []
# 检查皮肤质感
if "texture_homogeneity" in image_features:
if image_features["texture_homogeneity"] > 0.4:
ps_score += 0.2
ps_signs.append("皮肤质感过于均匀")
elif image_features["texture_homogeneity"] > 0.3:
ps_score += 0.1
ps_signs.append("皮肤质感较为均匀")
# 检查边缘不自然
if "edge_density" in image_features:
if image_features["edge_density"] < 0.01:
ps_score += 0.2
ps_signs.append("边缘过于平滑")
elif image_features["edge_density"] < 0.03:
ps_score += 0.1
ps_signs.append("边缘较为平滑")
# 检查颜色不自然
if "color_std" in image_features:
if image_features["color_std"] > 50:
ps_score += 0.2
ps_signs.append("颜色分布极不自然")
elif image_features["color_std"] > 30:
ps_score += 0.1
ps_signs.append("颜色分布略不自然")
# 检查噪点不一致
if "noise_level" in image_features and "noise_std" in image_features:
noise_ratio = image_features["noise_std"] / max(image_features["noise_level"], 0.001)
if noise_ratio < 0.5:
ps_score += 0.2
ps_signs.append("噪点分布不自然")
elif noise_ratio < 0.7:
ps_score += 0.1
ps_signs.append("噪点分布略不自然")
# 检查频率分布不自然
if "freq_ratio" in image_features:
if image_features["freq_ratio"] < 0.2:
ps_score += 0.2
ps_signs.append("频率分布不自然,可能有过度模糊处理")
elif image_features["freq_ratio"] > 2.0:
ps_score += 0.2
ps_signs.append("频率分布不自然,可能有过度锐化处理")
return min(ps_score, 1.0), ps_signs
## 6. 结果分析与分类
python
def get_detailed_analysis(ai_probability, ps_score, ps_signs, ai_signs, valid_models_count):
"""提供更详细的分析结果"""
# 根据有效模型数量调整置信度描述
confidence_prefix = ""
if valid_models_count >= 3:
confidence_prefix = "极高置信度:"
elif valid_models_count == 2:
confidence_prefix = "高置信度:"
elif valid_models_count == 1:
confidence_prefix = "中等置信度:"
# 调整后的阈值判断
if ai_probability > 0.6: # 降低为0.6
category = confidence_prefix + "高概率AI生成"
description = "图像很可能是由AI完全生成,几乎没有真人照片的特征。"
elif ai_probability > 0.4: # 降低为0.4
if ps_score > 0.5:
category = confidence_prefix + "中等概率AI生成,高概率PS修图"
description = "图像可能是真人照片经过大量后期处理,或是AI生成后经过修饰的图像。"
else:
category = confidence_prefix + "中等概率AI生成"
description = "图像有较多AI生成的特征,但也保留了一些真实照片的特点。"
elif ai_probability > 0.3: # 降低为0.3
if ps_score > 0.5:
category = confidence_prefix + "低概率AI生成,高概率PS修图"
description = "图像更可能是真人照片经过大量后期处理,PS痕迹明显。"
else:
category = confidence_prefix + "低概率AI生成"
description = "图像更可能是真人照片,但有一些AI生成或修饰的特征。"
else:
if ps_score > 0.6:
category = confidence_prefix + "真人照片,重度PS修图"
description = "图像基本是真人照片,但经过了大量后期处理,修饰痕迹明显。"
elif ps_score > 0.3:
category = confidence_prefix + "真人照片,中度PS修图"
description = "图像是真人照片,有明显的后期处理痕迹。"
elif ps_score > 0.1:
category = confidence_prefix + "真人照片,轻度PS修图"
description = "图像是真人照片,有少量后期处理。"
else:
category = confidence_prefix + "高概率真人照片,几乎无修图"
description = "图像几乎可以确定是未经大量处理的真人照片。"
# 添加具体的PS痕迹描述
if ps_signs:
ps_details = "检测到的修图痕迹:" + "、".join(ps_signs)
else:
ps_details = "未检测到明显的修图痕迹。"
# 添加AI特征描述
if ai_signs:
ai_details = "检测到的AI特征:" + "、".join(ai_signs)
else:
ai_details = "未检测到明显的AI生成特征。"
return category, description, ps_details, ai_details
## 7. 主检测函数
python
def detect_ai_image(image):
"""主检测函数"""
if image is None:
return {"error": "未提供图像"}
results = {}
valid_models = 0
weighted_ai_probability = 0
# 使用每个模型进行预测
for key, model_info in models.items():
if model_info["processor"] is not None and model_info["model"] is not None:
try:
# 处理图像
inputs = model_info["processor"](images=image, return_tensors="pt")
with torch.no_grad():
outputs = model_info["model"](**inputs)
# 获取概率
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
# 使用适配器处理不同模型的输出
ai_probability = process_model_output(model_info, outputs, probabilities)
# 添加到结果
predicted_class_idx = outputs.logits.argmax(-1).item()
results[key] = {
"model_name": model_info["name"],
"ai_probability": ai_probability,
"predicted_class": model_info["model"].config.id2label[predicted_class_idx]
}
# 累加加权概率
weighted_ai_probability += ai_probability * model_info["weight"]
valid_models += 1
except Exception as e:
results[key] = {
"model_name": model_info["name"],
"error": str(e)
}
# 计算最终加权概率
if valid_models > 0:
final_ai_probability = weighted_ai_probability / sum(m["weight"] for k, m in models.items() if m["processor"] is not None and m["model"] is not None)
else:
return {"error": "所有模型加载失败"}
# 分析图像特征
image_features = analyze_image_features(image)
# 检查AI特定特征
ai_feature_score, ai_signs = check_ai_specific_features(image_features)
# 分析PS痕迹
ps_score, ps_signs = detect_photoshop_signs(image_features)
# 应用特征权重调整AI概率
adjusted_probability = final_ai_probability
# 如果AI特征分数高,大幅提高AI概率
if ai_feature_score > 0.5:
adjusted_probability = max(adjusted_probability, 0.7)
elif ai_feature_score > 0.3:
adjusted_probability = max(adjusted_probability, 0.5)
# 高对称性是AI生成的强烈指标
if "horizontal_symmetry" in image_features and image_features["horizontal_symmetry"] > 0.7:
adjusted_probability += 0.15
if "vertical_symmetry" in image_features and image_features["vertical_symmetry"] > 0.7:
adjusted_probability += 0.15
# 高纹理相关性通常表示AI生成
if "texture_correlation" in image_features and image_features["texture_correlation"] > 0.9:
adjusted_probability += 0.1
# 低边缘密度通常表示AI生成
if image_features["edge_density"] < 0.01:
adjusted_probability += 0.1
# 确保概率在0-1范围内
adjusted_probability = min(1.0, max(0.0, adjusted_probability))
# 如果umm-maybe/AI-image-detector模型的预测与其他模型不一致,增加其权重
if "model1" in results and "ai_probability" in results["model1"]:
ai_detector_prob = results["model1"]["ai_probability"]
# 如果专用AI检测器给出的概率与调整后概率差异大,增加其权重
if abs(ai_detector_prob - adjusted_probability) > 0.3:
adjusted_probability = (adjusted_probability + ai_detector_prob * 2) / 3
# 获取详细分析
category, description, ps_details, ai_details = get_detailed_analysis(
adjusted_probability, ps_score, ps_signs, ai_signs, valid_models
)
# 构建最终结果
final_result = {
"ai_probability": adjusted_probability,
"original_ai_probability": final_ai_probability,
"ps_score": ps_score,
"ai_feature_score": ai_feature_score,
"category": category,
"description": description,
"ps_details": ps_details,
"ai_details": ai_details,
"individual_model_results": results,
"features": image_features
}
return final_result
## 8. Gradio界面
python
# 创建Gradio界面
iface = gr.Interface(
fn=detect_ai_image,
inputs=gr.Image(type="pil"),
outputs=gr.JSON(),
title="增强型AI图像检测API",
description="多模型集成检测图像是否由AI生成,同时分析PS修图痕迹",
examples=None,
allow_flagging="never"
)
iface.launch()
|