import gradio as gr import torch from PIL import Image import numpy as np import cv2 from transformers import AutoImageProcessor, AutoModelForImageClassification # 加载多个检测模型 models = { "model1": { "name": "umm-maybe/AI-image-detector", "processor": None, "model": None, "weight": 0.5 }, "model2": { "name": "microsoft/resnet-50", # 通用图像分类模型 "processor": None, "model": None, "weight": 0.25 }, "model3": { "name": "google/vit-base-patch16-224", # Vision Transformer模型 "processor": None, "model": None, "weight": 0.25 } } # 初始化模型 for key in models: try: models[key]["processor"] = AutoImageProcessor.from_pretrained(models[key]["name"]) models[key]["model"] = AutoModelForImageClassification.from_pretrained(models[key]["name"]) print(f"成功加载模型: {models[key]['name']}") except Exception as e: print(f"加载模型 {models[key]['name']} 失败: {str(e)}") models[key]["processor"] = None models[key]["model"] = None ## 2. 模型输出处理 python def process_model_output(model_info, outputs, probabilities): """处理不同模型的输出,统一返回AI生成概率""" model_name = model_info["name"].lower() # 针对不同模型的特殊处理 if "ai-image-detector" in model_name: # umm-maybe/AI-image-detector模型特殊处理 # 检查标签 ai_label_idx = None human_label_idx = None for idx, label in model_info["model"].config.id2label.items(): label_lower = label.lower() if "ai" in label_lower or "generated" in label_lower or "fake" in label_lower: ai_label_idx = idx if "human" in label_lower or "real" in label_lower: human_label_idx = idx # 修正后的标签解释逻辑 if human_label_idx is not None: # 如果预测为human,则AI概率应该低 ai_probability = 1 - float(probabilities[0][human_label_idx].item()) elif ai_label_idx is not None: # 如果预测为AI,则AI概率应该高 ai_probability = float(probabilities[0][ai_label_idx].item()) else: # 默认情况 ai_probability = 0.5 elif "resnet" in model_name: # 通用图像分类模型,使用简单启发式方法 predicted_class_idx = outputs.logits.argmax(-1).item() # 检查是否有与AI相关的类别 predicted_class = model_info["model"].config.id2label[predicted_class_idx].lower() # 简单启发式:检查类别名称是否包含与AI生成相关的关键词 ai_keywords = ["artificial", "generated", "synthetic", "fake", "computer"] for keyword in ai_keywords: if keyword in predicted_class: return float(probabilities[0][predicted_class_idx].item()) # 如果没有明确的AI类别,返回中等概率 return 0.5 elif "vit" in model_name: # Vision Transformer模型 predicted_class_idx = outputs.logits.argmax(-1).item() # 同样检查类别名称 predicted_class = model_info["model"].config.id2label[predicted_class_idx].lower() # 简单启发式:检查类别名称是否包含与AI生成相关的关键词 ai_keywords = ["artificial", "generated", "synthetic", "fake", "computer"] for keyword in ai_keywords: if keyword in predicted_class: return float(probabilities[0][predicted_class_idx].item()) # 如果没有明确的AI类别,返回中等概率 return 0.5 # 默认处理 predicted_class_idx = outputs.logits.argmax(-1).item() predicted_class = model_info["model"].config.id2label[predicted_class_idx].lower() if "ai" in predicted_class or "generated" in predicted_class or "fake" in predicted_class: return float(probabilities[0][predicted_class_idx].item()) else: return 1 - float(probabilities[0][predicted_class_idx].item()) return ai_probability ## 3. 图像特征分析 python def analyze_image_features(image): """分析图像特征""" # 转换为OpenCV格式 img_array = np.array(image) if len(img_array.shape) == 3 and img_array.shape[2] == 3: img_cv = cv2.cvtColor(img_array, cv2.COLOR_RGB2BGR) else: img_cv = img_array features = {} # 基本特征 features["width"] = image.width features["height"] = image.height features["aspect_ratio"] = image.width / max(1, image.height) # 颜色分析 if len(img_array.shape) == 3: features["avg_red"] = float(np.mean(img_array[:,:,0])) features["avg_green"] = float(np.mean(img_array[:,:,1])) features["avg_blue"] = float(np.mean(img_array[:,:,2])) # 颜色标准差 - 用于检测颜色分布是否自然 features["color_std"] = float(np.std([ features["avg_red"], features["avg_green"], features["avg_blue"] ])) # 边缘一致性分析 edges = cv2.Canny(img_cv, 100, 200) features["edge_density"] = float(np.sum(edges > 0) / (image.width * image.height)) # 纹理分析 - 使用灰度共生矩阵 if len(img_array.shape) == 3: gray = cv2.cvtColor(img_cv, cv2.COLOR_BGR2GRAY) from skimage.feature import graycomatrix, graycoprops # 计算GLCM distances = [5] angles = [0, np.pi/4, np.pi/2, 3*np.pi/4] glcm = graycomatrix(gray, distances=distances, angles=angles, symmetric=True, normed=True) # 计算GLCM属性 features["texture_contrast"] = float(np.mean(graycoprops(glcm, 'contrast')[0])) features["texture_homogeneity"] = float(np.mean(graycoprops(glcm, 'homogeneity')[0])) features["texture_correlation"] = float(np.mean(graycoprops(glcm, 'correlation')[0])) features["texture_energy"] = float(np.mean(graycoprops(glcm, 'energy')[0])) # 噪声分析 if len(img_array.shape) == 3: blurred = cv2.GaussianBlur(img_cv, (5, 5), 0) noise = cv2.absdiff(img_cv, blurred) features["noise_level"] = float(np.mean(noise)) # 噪声分布 - 用于检测噪声是否自然 features["noise_std"] = float(np.std(noise)) # 对称性分析 - AI生成图像通常有更高的对称性 if img_cv.shape[1] % 2 == 0: # 确保宽度是偶数 left_half = img_cv[:, :img_cv.shape[1]//2] right_half = cv2.flip(img_cv[:, img_cv.shape[1]//2:], 1) if left_half.shape == right_half.shape: h_symmetry = 1 - float(np.mean(cv2.absdiff(left_half, right_half)) / 255) features["horizontal_symmetry"] = h_symmetry if img_cv.shape[0] % 2 == 0: # 确保高度是偶数 top_half = img_cv[:img_cv.shape[0]//2, :] bottom_half = cv2.flip(img_cv[img_cv.shape[0]//2:, :], 0) if top_half.shape == bottom_half.shape: v_symmetry = 1 - float(np.mean(cv2.absdiff(top_half, bottom_half)) / 255) features["vertical_symmetry"] = v_symmetry # 频率域分析 - 检测不自然的频率分布 if len(img_array.shape) == 3: gray = cv2.cvtColor(img_cv, cv2.COLOR_BGR2GRAY) f_transform = np.fft.fft2(gray) f_shift = np.fft.fftshift(f_transform) magnitude = np.log(np.abs(f_shift) + 1) # 计算高频和低频成分的比例 h, w = magnitude.shape center_h, center_w = h // 2, w // 2 # 低频区域 (中心区域) low_freq_region = magnitude[center_h-h//8:center_h+h//8, center_w-w//8:center_w+w//8] low_freq_mean = np.mean(low_freq_region) # 高频区域 (边缘区域) high_freq_mean = np.mean(magnitude) - low_freq_mean features["freq_ratio"] = float(high_freq_mean / max(low_freq_mean, 0.001)) return features ## 4. AI特征检查 python def check_ai_specific_features(image_features): """检查AI生成图像的典型特征""" ai_score = 0 ai_signs = [] # 检查对称性 - AI生成图像通常对称性高 if "horizontal_symmetry" in image_features and "vertical_symmetry" in image_features: avg_symmetry = (image_features["horizontal_symmetry"] + image_features["vertical_symmetry"]) / 2 if avg_symmetry > 0.7: ai_score += 0.3 ai_signs.append("图像对称性异常高") # 检查纹理相关性 - AI生成图像通常纹理相关性高 if "texture_correlation" in image_features and image_features["texture_correlation"] > 0.9: ai_score += 0.2 ai_signs.append("纹理相关性异常高") # 检查边缘与噪声的关系 - AI生成图像通常边缘清晰但噪声不自然 if "edge_density" in image_features and "noise_level" in image_features: edge_noise_ratio = image_features["edge_density"] / max(image_features["noise_level"], 0.001) if edge_noise_ratio < 0.01: ai_score += 0.2 ai_signs.append("边缘与噪声分布不自然") # 检查颜色平滑度 - AI生成图像通常颜色过渡更平滑 if "color_std" in image_features and image_features["color_std"] < 10: ai_score += 0.2 ai_signs.append("颜色过渡异常平滑") # 检查纹理能量 - AI生成图像通常纹理能量分布不自然 if "texture_energy" in image_features and image_features["texture_energy"] < 0.02: ai_score += 0.2 ai_signs.append("纹理能量分布不自然") # 检查频率比例 - AI生成图像通常频率分布不自然 if "freq_ratio" in image_features: if image_features["freq_ratio"] < 0.1 or image_features["freq_ratio"] > 2.0: ai_score += 0.2 ai_signs.append("频率分布不自然") return min(ai_score, 1.0), ai_signs ## 5. PS痕迹检测 python def detect_photoshop_signs(image_features): """检测图像中的PS痕迹""" ps_score = 0 ps_signs = [] # 检查皮肤质感 if "texture_homogeneity" in image_features: if image_features["texture_homogeneity"] > 0.4: ps_score += 0.2 ps_signs.append("皮肤质感过于均匀") elif image_features["texture_homogeneity"] > 0.3: ps_score += 0.1 ps_signs.append("皮肤质感较为均匀") # 检查边缘不自然 if "edge_density" in image_features: if image_features["edge_density"] < 0.01: ps_score += 0.2 ps_signs.append("边缘过于平滑") elif image_features["edge_density"] < 0.03: ps_score += 0.1 ps_signs.append("边缘较为平滑") # 检查颜色不自然 if "color_std" in image_features: if image_features["color_std"] > 50: ps_score += 0.2 ps_signs.append("颜色分布极不自然") elif image_features["color_std"] > 30: ps_score += 0.1 ps_signs.append("颜色分布略不自然") # 检查噪点不一致 if "noise_level" in image_features and "noise_std" in image_features: noise_ratio = image_features["noise_std"] / max(image_features["noise_level"], 0.001) if noise_ratio < 0.5: ps_score += 0.2 ps_signs.append("噪点分布不自然") elif noise_ratio < 0.7: ps_score += 0.1 ps_signs.append("噪点分布略不自然") # 检查频率分布不自然 if "freq_ratio" in image_features: if image_features["freq_ratio"] < 0.2: ps_score += 0.2 ps_signs.append("频率分布不自然,可能有过度模糊处理") elif image_features["freq_ratio"] > 2.0: ps_score += 0.2 ps_signs.append("频率分布不自然,可能有过度锐化处理") return min(ps_score, 1.0), ps_signs ## 6. 结果分析与分类 python def get_detailed_analysis(ai_probability, ps_score, ps_signs, ai_signs, valid_models_count): """提供更详细的分析结果""" # 根据有效模型数量调整置信度描述 confidence_prefix = "" if valid_models_count >= 3: confidence_prefix = "极高置信度:" elif valid_models_count == 2: confidence_prefix = "高置信度:" elif valid_models_count == 1: confidence_prefix = "中等置信度:" # 调整后的阈值判断 if ai_probability > 0.6: # 降低为0.6 category = confidence_prefix + "高概率AI生成" description = "图像很可能是由AI完全生成,几乎没有真人照片的特征。" elif ai_probability > 0.4: # 降低为0.4 if ps_score > 0.5: category = confidence_prefix + "中等概率AI生成,高概率PS修图" description = "图像可能是真人照片经过大量后期处理,或是AI生成后经过修饰的图像。" else: category = confidence_prefix + "中等概率AI生成" description = "图像有较多AI生成的特征,但也保留了一些真实照片的特点。" elif ai_probability > 0.3: # 降低为0.3 if ps_score > 0.5: category = confidence_prefix + "低概率AI生成,高概率PS修图" description = "图像更可能是真人照片经过大量后期处理,PS痕迹明显。" else: category = confidence_prefix + "低概率AI生成" description = "图像更可能是真人照片,但有一些AI生成或修饰的特征。" else: if ps_score > 0.6: category = confidence_prefix + "真人照片,重度PS修图" description = "图像基本是真人照片,但经过了大量后期处理,修饰痕迹明显。" elif ps_score > 0.3: category = confidence_prefix + "真人照片,中度PS修图" description = "图像是真人照片,有明显的后期处理痕迹。" elif ps_score > 0.1: category = confidence_prefix + "真人照片,轻度PS修图" description = "图像是真人照片,有少量后期处理。" else: category = confidence_prefix + "高概率真人照片,几乎无修图" description = "图像几乎可以确定是未经大量处理的真人照片。" # 添加具体的PS痕迹描述 if ps_signs: ps_details = "检测到的修图痕迹:" + "、".join(ps_signs) else: ps_details = "未检测到明显的修图痕迹。" # 添加AI特征描述 if ai_signs: ai_details = "检测到的AI特征:" + "、".join(ai_signs) else: ai_details = "未检测到明显的AI生成特征。" return category, description, ps_details, ai_details ## 7. 主检测函数 python def detect_ai_image(image): """主检测函数""" if image is None: return {"error": "未提供图像"} results = {} valid_models = 0 weighted_ai_probability = 0 # 使用每个模型进行预测 for key, model_info in models.items(): if model_info["processor"] is not None and model_info["model"] is not None: try: # 处理图像 inputs = model_info["processor"](images=image, return_tensors="pt") with torch.no_grad(): outputs = model_info["model"](**inputs) # 获取概率 probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1) # 使用适配器处理不同模型的输出 ai_probability = process_model_output(model_info, outputs, probabilities) # 添加到结果 predicted_class_idx = outputs.logits.argmax(-1).item() results[key] = { "model_name": model_info["name"], "ai_probability": ai_probability, "predicted_class": model_info["model"].config.id2label[predicted_class_idx] } # 累加加权概率 weighted_ai_probability += ai_probability * model_info["weight"] valid_models += 1 except Exception as e: results[key] = { "model_name": model_info["name"], "error": str(e) } # 计算最终加权概率 if valid_models > 0: final_ai_probability = weighted_ai_probability / sum(m["weight"] for k, m in models.items() if m["processor"] is not None and m["model"] is not None) else: return {"error": "所有模型加载失败"} # 分析图像特征 image_features = analyze_image_features(image) # 检查AI特定特征 ai_feature_score, ai_signs = check_ai_specific_features(image_features) # 分析PS痕迹 ps_score, ps_signs = detect_photoshop_signs(image_features) # 应用特征权重调整AI概率 adjusted_probability = final_ai_probability # 如果AI特征分数高,大幅提高AI概率 if ai_feature_score > 0.5: adjusted_probability = max(adjusted_probability, 0.7) elif ai_feature_score > 0.3: adjusted_probability = max(adjusted_probability, 0.5) # 高对称性是AI生成的强烈指标 if "horizontal_symmetry" in image_features and image_features["horizontal_symmetry"] > 0.7: adjusted_probability += 0.15 if "vertical_symmetry" in image_features and image_features["vertical_symmetry"] > 0.7: adjusted_probability += 0.15 # 高纹理相关性通常表示AI生成 if "texture_correlation" in image_features and image_features["texture_correlation"] > 0.9: adjusted_probability += 0.1 # 低边缘密度通常表示AI生成 if image_features["edge_density"] < 0.01: adjusted_probability += 0.1 # 确保概率在0-1范围内 adjusted_probability = min(1.0, max(0.0, adjusted_probability)) # 如果umm-maybe/AI-image-detector模型的预测与其他模型不一致,增加其权重 if "model1" in results and "ai_probability" in results["model1"]: ai_detector_prob = results["model1"]["ai_probability"] # 如果专用AI检测器给出的概率与调整后概率差异大,增加其权重 if abs(ai_detector_prob - adjusted_probability) > 0.3: adjusted_probability = (adjusted_probability + ai_detector_prob * 2) / 3 # 获取详细分析 category, description, ps_details, ai_details = get_detailed_analysis( adjusted_probability, ps_score, ps_signs, ai_signs, valid_models ) # 构建最终结果 final_result = { "ai_probability": adjusted_probability, "original_ai_probability": final_ai_probability, "ps_score": ps_score, "ai_feature_score": ai_feature_score, "category": category, "description": description, "ps_details": ps_details, "ai_details": ai_details, "individual_model_results": results, "features": image_features } return final_result ## 8. Gradio界面 python # 创建Gradio界面 iface = gr.Interface( fn=detect_ai_image, inputs=gr.Image(type="pil"), outputs=gr.JSON(), title="增强型AI图像检测API", description="多模型集成检测图像是否由AI生成,同时分析PS修图痕迹", examples=None, allow_flagging="never" ) iface.launch()