Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,52 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
-
from PIL import Image
|
4 |
-
import numpy as np
|
5 |
-
from transformers import AutoFeatureExtractor, AutoModelForImageClassification
|
6 |
|
7 |
-
#
|
8 |
-
|
9 |
-
|
10 |
-
model = AutoModelForImageClassification.from_pretrained(model_name)
|
11 |
|
12 |
-
def
|
13 |
-
|
14 |
-
|
15 |
-
with torch.no_grad():
|
16 |
-
outputs = model(**inputs)
|
17 |
|
18 |
-
|
19 |
-
logits = outputs.logits
|
20 |
-
predicted_class_idx = logits.argmax(-1).item()
|
21 |
|
22 |
-
#
|
23 |
-
|
24 |
-
|
25 |
|
26 |
-
#
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
return {
|
30 |
"ai_probability": float(ai_probability),
|
31 |
"features": features,
|
32 |
-
"
|
|
|
33 |
}
|
34 |
|
35 |
-
def
|
36 |
-
#
|
37 |
features = {}
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
# 基本特征
|
43 |
-
features["width"] = image.width
|
44 |
-
features["height"] = image.height
|
45 |
-
features["aspect_ratio"] = image.width / max(1, image.height)
|
46 |
-
|
47 |
-
# 颜色分析
|
48 |
-
if len(img_array.shape) == 3: # 彩色图像
|
49 |
-
features["avg_red"] = float(np.mean(img_array[:,:,0]))
|
50 |
-
features["avg_green"] = float(np.mean(img_array[:,:,1]))
|
51 |
-
features["avg_blue"] = float(np.mean(img_array[:,:,2]))
|
52 |
|
53 |
return features
|
54 |
|
55 |
# 创建Gradio界面
|
56 |
iface = gr.Interface(
|
57 |
-
fn=
|
58 |
-
inputs=gr.
|
59 |
outputs=gr.JSON(),
|
60 |
-
title="AI
|
61 |
-
description="
|
62 |
)
|
63 |
|
64 |
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import pipeline
|
|
|
|
|
|
|
3 |
|
4 |
+
# 使用公开可用的AI文本检测模型
|
5 |
+
# 这个模型专门用于检测AI生成文本
|
6 |
+
detector = pipeline("text-classification", model="Xenova/distilbert-base-ai-generated-text-detection")
|
|
|
7 |
|
8 |
+
def detect_ai_text(text):
|
9 |
+
if not text or len(text.strip()) < 50:
|
10 |
+
return {"error": "文本太短,无法可靠检测"}
|
|
|
|
|
11 |
|
12 |
+
result = detector(text)
|
|
|
|
|
13 |
|
14 |
+
# 提取结果
|
15 |
+
label = result[0]["label"]
|
16 |
+
score = result[0]["score"]
|
17 |
|
18 |
+
# 格式化为人类可读结果
|
19 |
+
if "ai" in label.lower(): # AI生成
|
20 |
+
ai_probability = score
|
21 |
+
else: # 人类撰写
|
22 |
+
ai_probability = 1 - score
|
23 |
+
|
24 |
+
# 分析特征
|
25 |
+
features = analyze_text_features(text)
|
26 |
|
27 |
return {
|
28 |
"ai_probability": float(ai_probability),
|
29 |
"features": features,
|
30 |
+
"confidence": float(score),
|
31 |
+
"label": label
|
32 |
}
|
33 |
|
34 |
+
def analyze_text_features(text):
|
35 |
+
# 简单文本特征分析
|
36 |
features = {}
|
37 |
+
features["length"] = len(text)
|
38 |
+
features["avg_word_length"] = sum(len(word) for word in text.split()) / max(1, len(text.split()))
|
39 |
+
features["unique_words_ratio"] = len(set(text.lower().split())) / max(1, len(text.split()))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
return features
|
42 |
|
43 |
# 创建Gradio界面
|
44 |
iface = gr.Interface(
|
45 |
+
fn=detect_ai_text,
|
46 |
+
inputs=gr.Textbox(lines=10, placeholder="粘贴要检测的文本..."),
|
47 |
outputs=gr.JSON(),
|
48 |
+
title="AI文本检测API",
|
49 |
+
description="检测文本是否由AI生成"
|
50 |
)
|
51 |
|
52 |
iface.launch()
|