Spaces:
Sleeping
Sleeping
The 'not' part will be handled externally, so removed it
Browse files
app.py
CHANGED
@@ -26,26 +26,26 @@ def calculate_similarity(student_inputs, mentor_inputs):
|
|
26 |
Then append a 'not' to such options and place them at same index as in student_inputs.
|
27 |
Also we need to take care of value shifts after adding 'not' to some options, so use a new list
|
28 |
"""
|
29 |
-
student = []
|
30 |
-
mentor = []
|
31 |
-
|
32 |
-
for i in range(len(options)):
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
for i in range(len(options)):
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
print(f"Student inputs: {student}")
|
45 |
-
print(f"Mentor inputs: {mentor}")
|
46 |
-
|
47 |
-
student_tokens = tokenizer(
|
48 |
-
mentor_tokens = tokenizer(
|
49 |
|
50 |
with torch.no_grad():
|
51 |
student_output = model(**student_tokens).last_hidden_state.mean(dim=1)
|
|
|
26 |
Then append a 'not' to such options and place them at same index as in student_inputs.
|
27 |
Also we need to take care of value shifts after adding 'not' to some options, so use a new list
|
28 |
"""
|
29 |
+
# student = []
|
30 |
+
# mentor = []
|
31 |
+
|
32 |
+
# for i in range(len(options)):
|
33 |
+
# if options[i] in student_inputs:
|
34 |
+
# student.append(options[i])
|
35 |
+
# else:
|
36 |
+
# student.append(f"NOT {options[i]}")
|
37 |
+
|
38 |
+
# for i in range(len(options)):
|
39 |
+
# if options[i] in mentor_inputs:
|
40 |
+
# mentor.append(options[i])
|
41 |
+
# else:
|
42 |
+
# mentor.append(f"NOT {options[i]}")
|
43 |
+
|
44 |
+
# print(f"Student inputs: {student}")
|
45 |
+
# print(f"Mentor inputs: {mentor}")
|
46 |
+
|
47 |
+
student_tokens = tokenizer(student_inputs, return_tensors="pt", padding=True)
|
48 |
+
mentor_tokens = tokenizer(mentor_inputs, return_tensors="pt", padding=True)
|
49 |
|
50 |
with torch.no_grad():
|
51 |
student_output = model(**student_tokens).last_hidden_state.mean(dim=1)
|