File size: 10,429 Bytes
96283ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
#!/usr/bin/env python
# Written by Greg Ver Steeg
# See readme.pdf for documentation
# Or go to http://www.isi.edu/~gregv/npeet.html

import scipy.spatial as ss
from scipy.special import digamma
from math import log
import numpy.random as nr
import numpy as np
import random

# CONTINUOUS ESTIMATORS

def entropy(x, k=3, base=2):
    """ The classic K-L k-nearest neighbor continuous entropy estimator
        x should be a list of vectors, e.g. x = [[1.3], [3.7], [5.1], [2.4]]
        if x is a one-dimensional scalar and we have four samples
    """
    assert k <= len(x) - 1, "Set k smaller than num. samples - 1"
    d = len(x[0])
    N = len(x)
    intens = 1e-10  # small noise to break degeneracy, see doc.
    x = [list(p + intens * nr.rand(len(x[0]))) for p in x]
    tree = ss.cKDTree(x)
    nn = [tree.query(point, k + 1, p=float('inf'))[0][k] for point in x]
    const = digamma(N) - digamma(k) + d * log(2)
    return (const + d * np.mean(map(log, nn))) / log(base)

def centropy(x, y, k=3, base=2):
  """ The classic K-L k-nearest neighbor continuous entropy estimator for the
      entropy of X conditioned on Y.
  """
  hxy = entropy([xi + yi for (xi, yi) in zip(x, y)], k, base)
  hy = entropy(y, k, base)
  return hxy - hy

def column(xs, i):
  return [[x[i]] for x in xs]

def tc(xs, k=3, base=2):
  xis = [entropy(column(xs, i), k, base) for i in range(0, len(xs[0]))]
  return np.sum(xis) - entropy(xs, k, base)

def ctc(xs, y, k=3, base=2):
  xis = [centropy(column(xs, i), y, k, base) for i in range(0, len(xs[0]))]
  return np.sum(xis) - centropy(xs, y, k, base)

def corex(xs, ys, k=3, base=2):
  cxis = [mi(column(xs, i), ys, k, base) for i in range(0, len(xs[0]))]
  return np.sum(cxis) - mi(xs, ys, k, base)

def mi(x, y, k=3, base=2):
    """ Mutual information of x and y
        x, y should be a list of vectors, e.g. x = [[1.3], [3.7], [5.1], [2.4]]
        if x is a one-dimensional scalar and we have four samples
    """
    assert len(x) == len(y), "Lists should have same length"
    assert k <= len(x) - 1, "Set k smaller than num. samples - 1"
    intens = 1e-10  # small noise to break degeneracy, see doc.
    x = [list(p + intens * nr.rand(len(x[0]))) for p in x]
    y = [list(p + intens * nr.rand(len(y[0]))) for p in y]
    points = zip2(x, y)
    # Find nearest neighbors in joint space, p=inf means max-norm
    tree = ss.cKDTree(points)
    dvec = [tree.query(point, k + 1, p=float('inf'))[0][k] for point in points]
    a, b, c, d = avgdigamma(x, dvec), avgdigamma(y, dvec), digamma(k), digamma(len(x))
    return (-a - b + c + d) / log(base)


def cmi(x, y, z, k=3, base=2):
    """ Mutual information of x and y, conditioned on z
        x, y, z should be a list of vectors, e.g. x = [[1.3], [3.7], [5.1], [2.4]]
        if x is a one-dimensional scalar and we have four samples
    """
    assert len(x) == len(y), "Lists should have same length"
    assert k <= len(x) - 1, "Set k smaller than num. samples - 1"
    intens = 1e-10  # small noise to break degeneracy, see doc.
    x = [list(p + intens * nr.rand(len(x[0]))) for p in x]
    y = [list(p + intens * nr.rand(len(y[0]))) for p in y]
    z = [list(p + intens * nr.rand(len(z[0]))) for p in z]
    points = zip2(x, y, z)
    # Find nearest neighbors in joint space, p=inf means max-norm
    tree = ss.cKDTree(points)
    dvec = [tree.query(point, k + 1, p=float('inf'))[0][k] for point in points]
    a, b, c, d = avgdigamma(zip2(x, z), dvec), avgdigamma(zip2(y, z), dvec), avgdigamma(z, dvec), digamma(k)
    return (-a - b + c + d) / log(base)


def kldiv(x, xp, k=3, base=2):
    """ KL Divergence between p and q for x~p(x), xp~q(x)
        x, xp should be a list of vectors, e.g. x = [[1.3], [3.7], [5.1], [2.4]]
        if x is a one-dimensional scalar and we have four samples
    """
    assert k <= len(x) - 1, "Set k smaller than num. samples - 1"
    assert k <= len(xp) - 1, "Set k smaller than num. samples - 1"
    assert len(x[0]) == len(xp[0]), "Two distributions must have same dim."
    d = len(x[0])
    n = len(x)
    m = len(xp)
    const = log(m) - log(n - 1)
    tree = ss.cKDTree(x)
    treep = ss.cKDTree(xp)
    nn = [tree.query(point, k + 1, p=float('inf'))[0][k] for point in x]
    nnp = [treep.query(point, k, p=float('inf'))[0][k - 1] for point in x]
    return (const + d * np.mean(map(log, nnp)) - d * np.mean(map(log, nn))) / log(base)


# DISCRETE ESTIMATORS
def entropyd(sx, base=2):
    """ Discrete entropy estimator
        Given a list of samples which can be any hashable object
    """
    return entropyfromprobs(hist(sx), base=base)


def midd(x, y, base=2):
    """ Discrete mutual information estimator
        Given a list of samples which can be any hashable object
    """
    return -entropyd(zip(x, y), base) + entropyd(x, base) + entropyd(y, base)

def cmidd(x, y, z):
    """ Discrete mutual information estimator
        Given a list of samples which can be any hashable object
    """
    return entropyd(zip(y, z)) + entropyd(zip(x, z)) - entropyd(zip(x, y, z)) - entropyd(z)

def centropyd(x, y, base=2):
  """ The classic K-L k-nearest neighbor continuous entropy estimator for the
      entropy of X conditioned on Y.
  """
  return entropyd(zip(x, y), base) - entropyd(y, base)

def tcd(xs, base=2):
  xis = [entropyd(column(xs, i), base) for i in range(0, len(xs[0]))]
  hx = entropyd(xs, base)
  return np.sum(xis) - hx

def ctcd(xs, y, base=2):
  xis = [centropyd(column(xs, i), y, base) for i in range(0, len(xs[0]))]
  return np.sum(xis) - centropyd(xs, y, base)

def corexd(xs, ys, base=2):
  cxis = [midd(column(xs, i), ys, base) for i in range(0, len(xs[0]))]
  return np.sum(cxis) - midd(xs, ys, base)

def hist(sx):
    sx = discretize(sx)
    # Histogram from list of samples
    d = dict()
    for s in sx:
        if type(s) == list:
          s = tuple(s)
        d[s] = d.get(s, 0) + 1
    return map(lambda z: float(z) / len(sx), d.values())


def entropyfromprobs(probs, base=2):
    # Turn a normalized list of probabilities of discrete outcomes into entropy (base 2)
    return -sum(map(elog, probs)) / log(base)


def elog(x):
    # for entropy, 0 log 0 = 0. but we get an error for putting log 0
    if x <= 0. or x >= 1.:
        return 0
    else:
        return x * log(x)


# MIXED ESTIMATORS
def micd(x, y, k=3, base=2, warning=True):
    """ If x is continuous and y is discrete, compute mutual information
    """
    overallentropy = entropy(x, k, base)

    n = len(y)
    word_dict = dict()
    for i in range(len(y)):
      if type(y[i]) == list:
        y[i] = tuple(y[i])
    for sample in y:
        word_dict[sample] = word_dict.get(sample, 0) + 1. / n
    yvals = list(set(word_dict.keys()))

    mi = overallentropy
    for yval in yvals:
        xgiveny = [x[i] for i in range(n) if y[i] == yval]
        if k <= len(xgiveny) - 1:
            mi -= word_dict[yval] * entropy(xgiveny, k, base)
        else:
            if warning:
                print("Warning, after conditioning, on y=", yval, " insufficient data. Assuming maximal entropy in this case.")
            mi -= word_dict[yval] * overallentropy
    return np.abs(mi)  # units already applied

def midc(x, y, k=3, base=2, warning=True):
  return micd(y, x, k, base, warning)

def centropydc(x, y, k=3, base=2, warning=True):
  return entropyd(x, base) - midc(x, y, k, base, warning)

def centropycd(x, y, k=3, base=2, warning=True):
  return entropy(x, k, base) - micd(x, y, k, base, warning)

def ctcdc(xs, y, k=3, base=2, warning=True):
  xis = [centropydc(column(xs, i), y, k, base, warning) for i in range(0, len(xs[0]))]
  return np.sum(xis) - centropydc(xs, y, k, base, warning)

def ctccd(xs, y, k=3, base=2, warning=True):
  xis = [centropycd(column(xs, i), y, k, base, warning) for i in range(0, len(xs[0]))]
  return np.sum(xis) - centropycd(xs, y, k, base, warning)

def corexcd(xs, ys, k=3, base=2, warning=True):
  cxis = [micd(column(xs, i), ys, k, base, warning) for i in range(0, len(xs[0]))]
  return np.sum(cxis) - micd(xs, ys, k, base, warning)

def corexdc(xs, ys, k=3, base=2, warning=True):
  #cxis = [midc(column(xs, i), ys, k, base, warning) for i in range(0, len(xs[0]))]
  #joint = midc(xs, ys, k, base, warning)
  #return np.sum(cxis) - joint
  return tcd(xs, base) - ctcdc(xs, ys, k, base, warning)

# UTILITY FUNCTIONS
def vectorize(scalarlist):
    """ Turn a list of scalars into a list of one-d vectors
    """
    return [[x] for x in scalarlist]


def shuffle_test(measure, x, y, z=False, ns=200, ci=0.95, **kwargs):
    """ Shuffle test
        Repeatedly shuffle the x-values and then estimate measure(x, y, [z]).
        Returns the mean and conf. interval ('ci=0.95' default) over 'ns' runs.
        'measure' could me mi, cmi, e.g. Keyword arguments can be passed.
        Mutual information and CMI should have a mean near zero.
    """
    xp = x[:]  # A copy that we can shuffle
    outputs = []
    for i in range(ns):
        random.shuffle(xp)
        if z:
            outputs.append(measure(xp, y, z, **kwargs))
        else:
            outputs.append(measure(xp, y, **kwargs))
    outputs.sort()
    return np.mean(outputs), (outputs[int((1. - ci) / 2 * ns)], outputs[int((1. + ci) / 2 * ns)])


# INTERNAL FUNCTIONS

def avgdigamma(points, dvec):
    # This part finds number of neighbors in some radius in the marginal space
    # returns expectation value of <psi(nx)>
    N = len(points)
    tree = ss.cKDTree(points)
    avg = 0.
    for i in range(N):
        dist = dvec[i]
        # subtlety, we don't include the boundary point,
        # but we are implicitly adding 1 to kraskov def bc center point is included
        num_points = len(tree.query_ball_point(points[i], dist - 1e-15, p=float('inf')))
        avg += digamma(num_points) / N
    return avg


def zip2(*args):
    # zip2(x, y) takes the lists of vectors and makes it a list of vectors in a joint space
    # E.g. zip2([[1], [2], [3]], [[4], [5], [6]]) = [[1, 4], [2, 5], [3, 6]]
    return [sum(sublist, []) for sublist in zip(*args)]

def discretize(xs):
    def discretize_one(x):
        if len(x) > 1:
            return tuple(x)
        else:
            return x[0]
    # discretize(xs) takes a list of vectors and makes it a list of tuples or scalars
    return [discretize_one(x) for x in xs]

if __name__ == "__main__":
    print("NPEET: Non-parametric entropy estimation toolbox. See readme.pdf for details on usage.")