Spaces:
Build error
Build error
File size: 10,429 Bytes
96283ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
#!/usr/bin/env python
# Written by Greg Ver Steeg
# See readme.pdf for documentation
# Or go to http://www.isi.edu/~gregv/npeet.html
import scipy.spatial as ss
from scipy.special import digamma
from math import log
import numpy.random as nr
import numpy as np
import random
# CONTINUOUS ESTIMATORS
def entropy(x, k=3, base=2):
""" The classic K-L k-nearest neighbor continuous entropy estimator
x should be a list of vectors, e.g. x = [[1.3], [3.7], [5.1], [2.4]]
if x is a one-dimensional scalar and we have four samples
"""
assert k <= len(x) - 1, "Set k smaller than num. samples - 1"
d = len(x[0])
N = len(x)
intens = 1e-10 # small noise to break degeneracy, see doc.
x = [list(p + intens * nr.rand(len(x[0]))) for p in x]
tree = ss.cKDTree(x)
nn = [tree.query(point, k + 1, p=float('inf'))[0][k] for point in x]
const = digamma(N) - digamma(k) + d * log(2)
return (const + d * np.mean(map(log, nn))) / log(base)
def centropy(x, y, k=3, base=2):
""" The classic K-L k-nearest neighbor continuous entropy estimator for the
entropy of X conditioned on Y.
"""
hxy = entropy([xi + yi for (xi, yi) in zip(x, y)], k, base)
hy = entropy(y, k, base)
return hxy - hy
def column(xs, i):
return [[x[i]] for x in xs]
def tc(xs, k=3, base=2):
xis = [entropy(column(xs, i), k, base) for i in range(0, len(xs[0]))]
return np.sum(xis) - entropy(xs, k, base)
def ctc(xs, y, k=3, base=2):
xis = [centropy(column(xs, i), y, k, base) for i in range(0, len(xs[0]))]
return np.sum(xis) - centropy(xs, y, k, base)
def corex(xs, ys, k=3, base=2):
cxis = [mi(column(xs, i), ys, k, base) for i in range(0, len(xs[0]))]
return np.sum(cxis) - mi(xs, ys, k, base)
def mi(x, y, k=3, base=2):
""" Mutual information of x and y
x, y should be a list of vectors, e.g. x = [[1.3], [3.7], [5.1], [2.4]]
if x is a one-dimensional scalar and we have four samples
"""
assert len(x) == len(y), "Lists should have same length"
assert k <= len(x) - 1, "Set k smaller than num. samples - 1"
intens = 1e-10 # small noise to break degeneracy, see doc.
x = [list(p + intens * nr.rand(len(x[0]))) for p in x]
y = [list(p + intens * nr.rand(len(y[0]))) for p in y]
points = zip2(x, y)
# Find nearest neighbors in joint space, p=inf means max-norm
tree = ss.cKDTree(points)
dvec = [tree.query(point, k + 1, p=float('inf'))[0][k] for point in points]
a, b, c, d = avgdigamma(x, dvec), avgdigamma(y, dvec), digamma(k), digamma(len(x))
return (-a - b + c + d) / log(base)
def cmi(x, y, z, k=3, base=2):
""" Mutual information of x and y, conditioned on z
x, y, z should be a list of vectors, e.g. x = [[1.3], [3.7], [5.1], [2.4]]
if x is a one-dimensional scalar and we have four samples
"""
assert len(x) == len(y), "Lists should have same length"
assert k <= len(x) - 1, "Set k smaller than num. samples - 1"
intens = 1e-10 # small noise to break degeneracy, see doc.
x = [list(p + intens * nr.rand(len(x[0]))) for p in x]
y = [list(p + intens * nr.rand(len(y[0]))) for p in y]
z = [list(p + intens * nr.rand(len(z[0]))) for p in z]
points = zip2(x, y, z)
# Find nearest neighbors in joint space, p=inf means max-norm
tree = ss.cKDTree(points)
dvec = [tree.query(point, k + 1, p=float('inf'))[0][k] for point in points]
a, b, c, d = avgdigamma(zip2(x, z), dvec), avgdigamma(zip2(y, z), dvec), avgdigamma(z, dvec), digamma(k)
return (-a - b + c + d) / log(base)
def kldiv(x, xp, k=3, base=2):
""" KL Divergence between p and q for x~p(x), xp~q(x)
x, xp should be a list of vectors, e.g. x = [[1.3], [3.7], [5.1], [2.4]]
if x is a one-dimensional scalar and we have four samples
"""
assert k <= len(x) - 1, "Set k smaller than num. samples - 1"
assert k <= len(xp) - 1, "Set k smaller than num. samples - 1"
assert len(x[0]) == len(xp[0]), "Two distributions must have same dim."
d = len(x[0])
n = len(x)
m = len(xp)
const = log(m) - log(n - 1)
tree = ss.cKDTree(x)
treep = ss.cKDTree(xp)
nn = [tree.query(point, k + 1, p=float('inf'))[0][k] for point in x]
nnp = [treep.query(point, k, p=float('inf'))[0][k - 1] for point in x]
return (const + d * np.mean(map(log, nnp)) - d * np.mean(map(log, nn))) / log(base)
# DISCRETE ESTIMATORS
def entropyd(sx, base=2):
""" Discrete entropy estimator
Given a list of samples which can be any hashable object
"""
return entropyfromprobs(hist(sx), base=base)
def midd(x, y, base=2):
""" Discrete mutual information estimator
Given a list of samples which can be any hashable object
"""
return -entropyd(zip(x, y), base) + entropyd(x, base) + entropyd(y, base)
def cmidd(x, y, z):
""" Discrete mutual information estimator
Given a list of samples which can be any hashable object
"""
return entropyd(zip(y, z)) + entropyd(zip(x, z)) - entropyd(zip(x, y, z)) - entropyd(z)
def centropyd(x, y, base=2):
""" The classic K-L k-nearest neighbor continuous entropy estimator for the
entropy of X conditioned on Y.
"""
return entropyd(zip(x, y), base) - entropyd(y, base)
def tcd(xs, base=2):
xis = [entropyd(column(xs, i), base) for i in range(0, len(xs[0]))]
hx = entropyd(xs, base)
return np.sum(xis) - hx
def ctcd(xs, y, base=2):
xis = [centropyd(column(xs, i), y, base) for i in range(0, len(xs[0]))]
return np.sum(xis) - centropyd(xs, y, base)
def corexd(xs, ys, base=2):
cxis = [midd(column(xs, i), ys, base) for i in range(0, len(xs[0]))]
return np.sum(cxis) - midd(xs, ys, base)
def hist(sx):
sx = discretize(sx)
# Histogram from list of samples
d = dict()
for s in sx:
if type(s) == list:
s = tuple(s)
d[s] = d.get(s, 0) + 1
return map(lambda z: float(z) / len(sx), d.values())
def entropyfromprobs(probs, base=2):
# Turn a normalized list of probabilities of discrete outcomes into entropy (base 2)
return -sum(map(elog, probs)) / log(base)
def elog(x):
# for entropy, 0 log 0 = 0. but we get an error for putting log 0
if x <= 0. or x >= 1.:
return 0
else:
return x * log(x)
# MIXED ESTIMATORS
def micd(x, y, k=3, base=2, warning=True):
""" If x is continuous and y is discrete, compute mutual information
"""
overallentropy = entropy(x, k, base)
n = len(y)
word_dict = dict()
for i in range(len(y)):
if type(y[i]) == list:
y[i] = tuple(y[i])
for sample in y:
word_dict[sample] = word_dict.get(sample, 0) + 1. / n
yvals = list(set(word_dict.keys()))
mi = overallentropy
for yval in yvals:
xgiveny = [x[i] for i in range(n) if y[i] == yval]
if k <= len(xgiveny) - 1:
mi -= word_dict[yval] * entropy(xgiveny, k, base)
else:
if warning:
print("Warning, after conditioning, on y=", yval, " insufficient data. Assuming maximal entropy in this case.")
mi -= word_dict[yval] * overallentropy
return np.abs(mi) # units already applied
def midc(x, y, k=3, base=2, warning=True):
return micd(y, x, k, base, warning)
def centropydc(x, y, k=3, base=2, warning=True):
return entropyd(x, base) - midc(x, y, k, base, warning)
def centropycd(x, y, k=3, base=2, warning=True):
return entropy(x, k, base) - micd(x, y, k, base, warning)
def ctcdc(xs, y, k=3, base=2, warning=True):
xis = [centropydc(column(xs, i), y, k, base, warning) for i in range(0, len(xs[0]))]
return np.sum(xis) - centropydc(xs, y, k, base, warning)
def ctccd(xs, y, k=3, base=2, warning=True):
xis = [centropycd(column(xs, i), y, k, base, warning) for i in range(0, len(xs[0]))]
return np.sum(xis) - centropycd(xs, y, k, base, warning)
def corexcd(xs, ys, k=3, base=2, warning=True):
cxis = [micd(column(xs, i), ys, k, base, warning) for i in range(0, len(xs[0]))]
return np.sum(cxis) - micd(xs, ys, k, base, warning)
def corexdc(xs, ys, k=3, base=2, warning=True):
#cxis = [midc(column(xs, i), ys, k, base, warning) for i in range(0, len(xs[0]))]
#joint = midc(xs, ys, k, base, warning)
#return np.sum(cxis) - joint
return tcd(xs, base) - ctcdc(xs, ys, k, base, warning)
# UTILITY FUNCTIONS
def vectorize(scalarlist):
""" Turn a list of scalars into a list of one-d vectors
"""
return [[x] for x in scalarlist]
def shuffle_test(measure, x, y, z=False, ns=200, ci=0.95, **kwargs):
""" Shuffle test
Repeatedly shuffle the x-values and then estimate measure(x, y, [z]).
Returns the mean and conf. interval ('ci=0.95' default) over 'ns' runs.
'measure' could me mi, cmi, e.g. Keyword arguments can be passed.
Mutual information and CMI should have a mean near zero.
"""
xp = x[:] # A copy that we can shuffle
outputs = []
for i in range(ns):
random.shuffle(xp)
if z:
outputs.append(measure(xp, y, z, **kwargs))
else:
outputs.append(measure(xp, y, **kwargs))
outputs.sort()
return np.mean(outputs), (outputs[int((1. - ci) / 2 * ns)], outputs[int((1. + ci) / 2 * ns)])
# INTERNAL FUNCTIONS
def avgdigamma(points, dvec):
# This part finds number of neighbors in some radius in the marginal space
# returns expectation value of <psi(nx)>
N = len(points)
tree = ss.cKDTree(points)
avg = 0.
for i in range(N):
dist = dvec[i]
# subtlety, we don't include the boundary point,
# but we are implicitly adding 1 to kraskov def bc center point is included
num_points = len(tree.query_ball_point(points[i], dist - 1e-15, p=float('inf')))
avg += digamma(num_points) / N
return avg
def zip2(*args):
# zip2(x, y) takes the lists of vectors and makes it a list of vectors in a joint space
# E.g. zip2([[1], [2], [3]], [[4], [5], [6]]) = [[1, 4], [2, 5], [3, 6]]
return [sum(sublist, []) for sublist in zip(*args)]
def discretize(xs):
def discretize_one(x):
if len(x) > 1:
return tuple(x)
else:
return x[0]
# discretize(xs) takes a list of vectors and makes it a list of tuples or scalars
return [discretize_one(x) for x in xs]
if __name__ == "__main__":
print("NPEET: Non-parametric entropy estimation toolbox. See readme.pdf for details on usage.")
|