File size: 10,773 Bytes
96283ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
'''
Calculate the information in the network
Can be by the full distribution rule (for small netowrk) or bt diffrenet approximation method
'''
import multiprocessing
import warnings
import numpy as np
import tensorflow as tf
import idnns.information.information_utilities as inf_ut
from idnns.networks import model as mo
from idnns.information.mutual_info_estimation import calc_varitional_information
warnings.filterwarnings("ignore")
from joblib import Parallel, delayed
NUM_CORES = multiprocessing.cpu_count()
from idnns.information.mutual_information_calculation import *
import numpy as np


def calc_information_for_layer(data, bins, unique_inverse_x, unique_inverse_y, pxs, pys1):
	bins = bins.astype(np.float32)
	digitized = bins[np.digitize(np.squeeze(data.reshape(1, -1)), bins) - 1].reshape(len(data), -1)
	b2 = np.ascontiguousarray(digitized).view(
		np.dtype((np.void, digitized.dtype.itemsize * digitized.shape[1])))
	unique_array, unique_inverse_t, unique_counts = \
		np.unique(b2, return_index=False, return_inverse=True, return_counts=True)
	p_ts = unique_counts / float(sum(unique_counts))
	PXs, PYs = np.asarray(pxs).T, np.asarray(pys1).T
	local_IXT, local_ITY = calc_information_from_mat(PXs, PYs, p_ts, digitized, unique_inverse_x, unique_inverse_y,
	                                                 unique_array)
	return local_IXT, local_ITY


def calc_information_sampling(data, bins, pys1, pxs, label, b, b1, len_unique_a, p_YgX, unique_inverse_x,
                              unique_inverse_y, calc_DKL=False):
	bins = bins.astype(np.float32)
	num_of_bins = bins.shape[0]
	# bins = stats.mstats.mquantiles(np.squeeze(data.reshape(1, -1)), np.linspace(0,1, num=num_of_bins))
	# hist, bin_edges = np.histogram(np.squeeze(data.reshape(1, -1)), normed=True)
	digitized = bins[np.digitize(np.squeeze(data.reshape(1, -1)), bins) - 1].reshape(len(data), -1)
	b2 = np.ascontiguousarray(digitized).view(
		np.dtype((np.void, digitized.dtype.itemsize * digitized.shape[1])))
	unique_array, unique_inverse_t, unique_counts = \
		np.unique(b2, return_index=False, return_inverse=True, return_counts=True)
	p_ts = unique_counts / float(sum(unique_counts))
	PXs, PYs = np.asarray(pxs).T, np.asarray(pys1).T
	if calc_DKL:
		pxy_given_T = np.array(
			[calc_probs(i, unique_inverse_t, label, b, b1, len_unique_a) for i in range(0, len(unique_array))]
		)
		p_XgT = np.vstack(pxy_given_T[:, 0])
		p_YgT = pxy_given_T[:, 1]
		p_YgT = np.vstack(p_YgT).T
		DKL_YgX_YgT = np.sum([inf_ut.KL(c_p_YgX, p_YgT.T) for c_p_YgX in p_YgX.T], axis=0)
		H_Xgt = np.nansum(p_XgT * np.log2(p_XgT), axis=1)
	local_IXT, local_ITY = calc_information_from_mat(PXs, PYs, p_ts, digitized, unique_inverse_x, unique_inverse_y,
	                                                 unique_array)
	return local_IXT, local_ITY


def calc_information_for_layer_with_other(data, bins, unique_inverse_x, unique_inverse_y, label,
                                          b, b1, len_unique_a, pxs, p_YgX, pys1,
                                          percent_of_sampling=50):
	local_IXT, local_ITY = calc_information_sampling(data, bins, pys1, pxs, label, b, b1,
	                                                 len_unique_a, p_YgX, unique_inverse_x,
	                                                 unique_inverse_y)
	number_of_indexs = int(data.shape[1] * (1. / 100 * percent_of_sampling))
	indexs_of_sampls = np.random.choice(data.shape[1], number_of_indexs, replace=False)
	if percent_of_sampling != 100:
		sampled_data = data[:, indexs_of_sampls]
		sampled_local_IXT, sampled_local_ITY = calc_information_sampling(
			sampled_data, bins, pys1, pxs, label, b, b1, len_unique_a, p_YgX, unique_inverse_x, unique_inverse_y)

	params = {}
	params['local_IXT'] = local_IXT
	params['local_ITY'] = local_ITY
	return params


def calc_by_sampling_neurons(ws_iter_index, num_of_samples, label, sigma, bins, pxs):
	iter_infomration = []
	for j in range(len(ws_iter_index)):
		data = ws_iter_index[j]
		new_data = np.zeros((num_of_samples * data.shape[0], data.shape[1]))
		labels = np.zeros((num_of_samples * label.shape[0], label.shape[1]))
		x = np.zeros((num_of_samples * data.shape[0], 2))
		for i in range(data.shape[0]):
			cov_matrix = np.eye(data[i, :].shape[0]) * sigma
			t_i = np.random.multivariate_normal(data[i, :], cov_matrix, num_of_samples)
			new_data[num_of_samples * i:(num_of_samples * (i + 1)), :] = t_i
			labels[num_of_samples * i:(num_of_samples * (i + 1)), :] = label[i, :]
			x[num_of_samples * i:(num_of_samples * (i + 1)), 0] = i
		b = np.ascontiguousarray(x).view(np.dtype((np.void, x.dtype.itemsize * x.shape[1])))
		unique_array, unique_indices, unique_inverse_x, unique_counts = \
			np.unique(b, return_index=True, return_inverse=True, return_counts=True)
		b_y = np.ascontiguousarray(labels).view(np.dtype((np.void, labels.dtype.itemsize * labels.shape[1])))
		unique_array_y, unique_indices_y, unique_inverse_y, unique_counts_y = \
			np.unique(b_y, return_index=True, return_inverse=True, return_counts=True)
		pys1 = unique_counts_y / float(np.sum(unique_counts_y))
		iter_infomration.append(
			calc_information_for_layer(data=new_data, bins=bins, unique_inverse_x=unique_inverse_x,
			                           unique_inverse_y=unique_inverse_y, pxs=pxs, pys1=pys1))
		params = np.array(iter_infomration)
		return params


def calc_information_for_epoch(iter_index, interval_information_display, ws_iter_index, bins, unique_inverse_x,
                               unique_inverse_y, label, b, b1,
                               len_unique_a, pys, pxs, py_x, pys1, model_path, input_size, layerSize,
                               calc_vartional_information=False, calc_information_by_sampling=False,
                               calc_full_and_vartional=False, calc_regular_information=True, num_of_samples=100,
                               sigma=0.5, ss=[], ks=[]):
	"""Calculate the information for all the layers for specific epoch"""
	np.random.seed(None)
	if calc_full_and_vartional:
		# Vartional information
		params_vartional = [
			calc_varitional_information(ws_iter_index[i], label, model_path, i, len(ws_iter_index) - 1, iter_index,
			                            input_size, layerSize, ss[i], pys, ks[i], search_sigma=False) for i in
			range(len(ws_iter_index))]
		# Full plug-in infomration
		params_original = np.array(
			[calc_information_for_layer_with_other(data=ws_iter_index[i], bins=bins, unique_inverse_x=unique_inverse_x,
			                                       unique_inverse_y=unique_inverse_y, label=label,
			                                       b=b, b1=b1, len_unique_a=len_unique_a, pxs=pxs,
			                                       p_YgX=py_x, pys1=pys1)
			 for i in range(len(ws_iter_index))])
		# Combine them
		params = []
		for i in range(len(ws_iter_index)):
			current_params = params_original[i]
			current_params_vartional = params_vartional[i]
			current_params['IXT_vartional'] = current_params_vartional['local_IXT']
			current_params['ITY_vartional'] = current_params_vartional['local_ITY']
			params.append(current_params)
	elif calc_vartional_information:
		params = [
			calc_varitional_information(ws_iter_index[i], label, model_path, i, len(ws_iter_index) - 1, iter_index,
			                            input_size, layerSize, ss[i], pys, ks[i], search_sigma=True) for i in
			range(len(ws_iter_index))]
	# Calc infomration of only subset of the neurons
	elif calc_information_by_sampling:
		parmas = calc_by_sampling_neurons(ws_iter_index=ws_iter_index, num_of_samples=num_of_samples, label=label,
		                                  sigma=sigma, bins=bins, pxs=pxs)

	elif calc_regular_information:
		params = np.array(
			[calc_information_for_layer_with_other(data=ws_iter_index[i], bins=bins, unique_inverse_x=unique_inverse_x,
			                                       unique_inverse_y=unique_inverse_y, label=label,
			                                       b=b, b1=b1, len_unique_a=len_unique_a, pxs=pxs,
			                                       p_YgX=py_x, pys1=pys1)
			 for i in range(len(ws_iter_index))])

	if np.mod(iter_index, interval_information_display) == 0:
		print('Calculated The information of epoch number - {0}'.format(iter_index))
	return params


def extract_probs(label, x):
	"""calculate the probabilities of the given data and labels p(x), p(y) and (y|x)"""
	pys = np.sum(label, axis=0) / float(label.shape[0])
	b = np.ascontiguousarray(x).view(np.dtype((np.void, x.dtype.itemsize * x.shape[1])))
	unique_array, unique_indices, unique_inverse_x, unique_counts = \
		np.unique(b, return_index=True, return_inverse=True, return_counts=True)
	unique_a = x[unique_indices]
	b1 = np.ascontiguousarray(unique_a).view(np.dtype((np.void, unique_a.dtype.itemsize * unique_a.shape[1])))
	pxs = unique_counts / float(np.sum(unique_counts))
	p_y_given_x = []
	for i in range(0, len(unique_array)):
		indexs = unique_inverse_x == i
		py_x_current = np.mean(label[indexs, :], axis=0)
		p_y_given_x.append(py_x_current)
	p_y_given_x = np.array(p_y_given_x).T
	b_y = np.ascontiguousarray(label).view(np.dtype((np.void, label.dtype.itemsize * label.shape[1])))
	unique_array_y, unique_indices_y, unique_inverse_y, unique_counts_y = \
		np.unique(b_y, return_index=True, return_inverse=True, return_counts=True)
	pys1 = unique_counts_y / float(np.sum(unique_counts_y))
	return pys, pys1, p_y_given_x, b1, b, unique_a, unique_inverse_x, unique_inverse_y, pxs


def get_information(ws, x, label, num_of_bins, interval_information_display, model, layerSize,
                    calc_parallel=True, py_hats=0):
	"""Calculate the information for the network for all the epochs and all the layers"""
	print('Start calculating the information...')
	bins = np.linspace(-1, 1, num_of_bins)
	label = np.array(label).astype(float)
	pys, pys1, p_y_given_x, b1, b, unique_a, unique_inverse_x, unique_inverse_y, pxs = extract_probs(label, x)
	if calc_parallel:
		params = np.array(Parallel(n_jobs=NUM_CORES
		                           )(delayed(calc_information_for_epoch)
		                             (i, interval_information_display, ws[i], bins, unique_inverse_x, unique_inverse_y,
		                              label,
		                              b, b1, len(unique_a), pys,
		                              pxs, p_y_given_x, pys1, model.save_file, x.shape[1], layerSize)
		                             for i in range(len(ws))))
	else:
		params = np.array([calc_information_for_epoch
		                   (i, interval_information_display, ws[i], bins, unique_inverse_x, unique_inverse_y,
		                    label, b, b1, len(unique_a), pys,
		                    pxs, p_y_given_x, pys1, model.save_file, x.shape[1], layerSize)
		                   for i in range(len(ws))])
	return params