Spaces:
Build error
Build error
File size: 10,773 Bytes
96283ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
'''
Calculate the information in the network
Can be by the full distribution rule (for small netowrk) or bt diffrenet approximation method
'''
import multiprocessing
import warnings
import numpy as np
import tensorflow as tf
import idnns.information.information_utilities as inf_ut
from idnns.networks import model as mo
from idnns.information.mutual_info_estimation import calc_varitional_information
warnings.filterwarnings("ignore")
from joblib import Parallel, delayed
NUM_CORES = multiprocessing.cpu_count()
from idnns.information.mutual_information_calculation import *
import numpy as np
def calc_information_for_layer(data, bins, unique_inverse_x, unique_inverse_y, pxs, pys1):
bins = bins.astype(np.float32)
digitized = bins[np.digitize(np.squeeze(data.reshape(1, -1)), bins) - 1].reshape(len(data), -1)
b2 = np.ascontiguousarray(digitized).view(
np.dtype((np.void, digitized.dtype.itemsize * digitized.shape[1])))
unique_array, unique_inverse_t, unique_counts = \
np.unique(b2, return_index=False, return_inverse=True, return_counts=True)
p_ts = unique_counts / float(sum(unique_counts))
PXs, PYs = np.asarray(pxs).T, np.asarray(pys1).T
local_IXT, local_ITY = calc_information_from_mat(PXs, PYs, p_ts, digitized, unique_inverse_x, unique_inverse_y,
unique_array)
return local_IXT, local_ITY
def calc_information_sampling(data, bins, pys1, pxs, label, b, b1, len_unique_a, p_YgX, unique_inverse_x,
unique_inverse_y, calc_DKL=False):
bins = bins.astype(np.float32)
num_of_bins = bins.shape[0]
# bins = stats.mstats.mquantiles(np.squeeze(data.reshape(1, -1)), np.linspace(0,1, num=num_of_bins))
# hist, bin_edges = np.histogram(np.squeeze(data.reshape(1, -1)), normed=True)
digitized = bins[np.digitize(np.squeeze(data.reshape(1, -1)), bins) - 1].reshape(len(data), -1)
b2 = np.ascontiguousarray(digitized).view(
np.dtype((np.void, digitized.dtype.itemsize * digitized.shape[1])))
unique_array, unique_inverse_t, unique_counts = \
np.unique(b2, return_index=False, return_inverse=True, return_counts=True)
p_ts = unique_counts / float(sum(unique_counts))
PXs, PYs = np.asarray(pxs).T, np.asarray(pys1).T
if calc_DKL:
pxy_given_T = np.array(
[calc_probs(i, unique_inverse_t, label, b, b1, len_unique_a) for i in range(0, len(unique_array))]
)
p_XgT = np.vstack(pxy_given_T[:, 0])
p_YgT = pxy_given_T[:, 1]
p_YgT = np.vstack(p_YgT).T
DKL_YgX_YgT = np.sum([inf_ut.KL(c_p_YgX, p_YgT.T) for c_p_YgX in p_YgX.T], axis=0)
H_Xgt = np.nansum(p_XgT * np.log2(p_XgT), axis=1)
local_IXT, local_ITY = calc_information_from_mat(PXs, PYs, p_ts, digitized, unique_inverse_x, unique_inverse_y,
unique_array)
return local_IXT, local_ITY
def calc_information_for_layer_with_other(data, bins, unique_inverse_x, unique_inverse_y, label,
b, b1, len_unique_a, pxs, p_YgX, pys1,
percent_of_sampling=50):
local_IXT, local_ITY = calc_information_sampling(data, bins, pys1, pxs, label, b, b1,
len_unique_a, p_YgX, unique_inverse_x,
unique_inverse_y)
number_of_indexs = int(data.shape[1] * (1. / 100 * percent_of_sampling))
indexs_of_sampls = np.random.choice(data.shape[1], number_of_indexs, replace=False)
if percent_of_sampling != 100:
sampled_data = data[:, indexs_of_sampls]
sampled_local_IXT, sampled_local_ITY = calc_information_sampling(
sampled_data, bins, pys1, pxs, label, b, b1, len_unique_a, p_YgX, unique_inverse_x, unique_inverse_y)
params = {}
params['local_IXT'] = local_IXT
params['local_ITY'] = local_ITY
return params
def calc_by_sampling_neurons(ws_iter_index, num_of_samples, label, sigma, bins, pxs):
iter_infomration = []
for j in range(len(ws_iter_index)):
data = ws_iter_index[j]
new_data = np.zeros((num_of_samples * data.shape[0], data.shape[1]))
labels = np.zeros((num_of_samples * label.shape[0], label.shape[1]))
x = np.zeros((num_of_samples * data.shape[0], 2))
for i in range(data.shape[0]):
cov_matrix = np.eye(data[i, :].shape[0]) * sigma
t_i = np.random.multivariate_normal(data[i, :], cov_matrix, num_of_samples)
new_data[num_of_samples * i:(num_of_samples * (i + 1)), :] = t_i
labels[num_of_samples * i:(num_of_samples * (i + 1)), :] = label[i, :]
x[num_of_samples * i:(num_of_samples * (i + 1)), 0] = i
b = np.ascontiguousarray(x).view(np.dtype((np.void, x.dtype.itemsize * x.shape[1])))
unique_array, unique_indices, unique_inverse_x, unique_counts = \
np.unique(b, return_index=True, return_inverse=True, return_counts=True)
b_y = np.ascontiguousarray(labels).view(np.dtype((np.void, labels.dtype.itemsize * labels.shape[1])))
unique_array_y, unique_indices_y, unique_inverse_y, unique_counts_y = \
np.unique(b_y, return_index=True, return_inverse=True, return_counts=True)
pys1 = unique_counts_y / float(np.sum(unique_counts_y))
iter_infomration.append(
calc_information_for_layer(data=new_data, bins=bins, unique_inverse_x=unique_inverse_x,
unique_inverse_y=unique_inverse_y, pxs=pxs, pys1=pys1))
params = np.array(iter_infomration)
return params
def calc_information_for_epoch(iter_index, interval_information_display, ws_iter_index, bins, unique_inverse_x,
unique_inverse_y, label, b, b1,
len_unique_a, pys, pxs, py_x, pys1, model_path, input_size, layerSize,
calc_vartional_information=False, calc_information_by_sampling=False,
calc_full_and_vartional=False, calc_regular_information=True, num_of_samples=100,
sigma=0.5, ss=[], ks=[]):
"""Calculate the information for all the layers for specific epoch"""
np.random.seed(None)
if calc_full_and_vartional:
# Vartional information
params_vartional = [
calc_varitional_information(ws_iter_index[i], label, model_path, i, len(ws_iter_index) - 1, iter_index,
input_size, layerSize, ss[i], pys, ks[i], search_sigma=False) for i in
range(len(ws_iter_index))]
# Full plug-in infomration
params_original = np.array(
[calc_information_for_layer_with_other(data=ws_iter_index[i], bins=bins, unique_inverse_x=unique_inverse_x,
unique_inverse_y=unique_inverse_y, label=label,
b=b, b1=b1, len_unique_a=len_unique_a, pxs=pxs,
p_YgX=py_x, pys1=pys1)
for i in range(len(ws_iter_index))])
# Combine them
params = []
for i in range(len(ws_iter_index)):
current_params = params_original[i]
current_params_vartional = params_vartional[i]
current_params['IXT_vartional'] = current_params_vartional['local_IXT']
current_params['ITY_vartional'] = current_params_vartional['local_ITY']
params.append(current_params)
elif calc_vartional_information:
params = [
calc_varitional_information(ws_iter_index[i], label, model_path, i, len(ws_iter_index) - 1, iter_index,
input_size, layerSize, ss[i], pys, ks[i], search_sigma=True) for i in
range(len(ws_iter_index))]
# Calc infomration of only subset of the neurons
elif calc_information_by_sampling:
parmas = calc_by_sampling_neurons(ws_iter_index=ws_iter_index, num_of_samples=num_of_samples, label=label,
sigma=sigma, bins=bins, pxs=pxs)
elif calc_regular_information:
params = np.array(
[calc_information_for_layer_with_other(data=ws_iter_index[i], bins=bins, unique_inverse_x=unique_inverse_x,
unique_inverse_y=unique_inverse_y, label=label,
b=b, b1=b1, len_unique_a=len_unique_a, pxs=pxs,
p_YgX=py_x, pys1=pys1)
for i in range(len(ws_iter_index))])
if np.mod(iter_index, interval_information_display) == 0:
print('Calculated The information of epoch number - {0}'.format(iter_index))
return params
def extract_probs(label, x):
"""calculate the probabilities of the given data and labels p(x), p(y) and (y|x)"""
pys = np.sum(label, axis=0) / float(label.shape[0])
b = np.ascontiguousarray(x).view(np.dtype((np.void, x.dtype.itemsize * x.shape[1])))
unique_array, unique_indices, unique_inverse_x, unique_counts = \
np.unique(b, return_index=True, return_inverse=True, return_counts=True)
unique_a = x[unique_indices]
b1 = np.ascontiguousarray(unique_a).view(np.dtype((np.void, unique_a.dtype.itemsize * unique_a.shape[1])))
pxs = unique_counts / float(np.sum(unique_counts))
p_y_given_x = []
for i in range(0, len(unique_array)):
indexs = unique_inverse_x == i
py_x_current = np.mean(label[indexs, :], axis=0)
p_y_given_x.append(py_x_current)
p_y_given_x = np.array(p_y_given_x).T
b_y = np.ascontiguousarray(label).view(np.dtype((np.void, label.dtype.itemsize * label.shape[1])))
unique_array_y, unique_indices_y, unique_inverse_y, unique_counts_y = \
np.unique(b_y, return_index=True, return_inverse=True, return_counts=True)
pys1 = unique_counts_y / float(np.sum(unique_counts_y))
return pys, pys1, p_y_given_x, b1, b, unique_a, unique_inverse_x, unique_inverse_y, pxs
def get_information(ws, x, label, num_of_bins, interval_information_display, model, layerSize,
calc_parallel=True, py_hats=0):
"""Calculate the information for the network for all the epochs and all the layers"""
print('Start calculating the information...')
bins = np.linspace(-1, 1, num_of_bins)
label = np.array(label).astype(float)
pys, pys1, p_y_given_x, b1, b, unique_a, unique_inverse_x, unique_inverse_y, pxs = extract_probs(label, x)
if calc_parallel:
params = np.array(Parallel(n_jobs=NUM_CORES
)(delayed(calc_information_for_epoch)
(i, interval_information_display, ws[i], bins, unique_inverse_x, unique_inverse_y,
label,
b, b1, len(unique_a), pys,
pxs, p_y_given_x, pys1, model.save_file, x.shape[1], layerSize)
for i in range(len(ws))))
else:
params = np.array([calc_information_for_epoch
(i, interval_information_display, ws[i], bins, unique_inverse_x, unique_inverse_y,
label, b, b1, len(unique_a), pys,
pxs, p_y_given_x, pys1, model.save_file, x.shape[1], layerSize)
for i in range(len(ws))])
return params
|