File size: 7,444 Bytes
96283ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import numpy as np
from scipy.optimize import minimize
import sys
import tensorflow as tf
from idnns.networks import model as mo
import contextlib
import idnns.information.entropy_estimators as ee

@contextlib.contextmanager
def printoptions(*args, **kwargs):
    original = np.get_printoptions()
    np.set_printoptions(*args, **kwargs)
    try:
        yield
    finally:
        np.set_printoptions(**original)


def optimiaze_func(s, diff_mat, d, N):
    diff_mat1 = (1. / (np.sqrt(2. * np.pi) * (s ** 2) ** (d / 2.))) * np.exp(-diff_mat / (2. * s ** 2))
    np.fill_diagonal(diff_mat1, 0)
    diff_mat2 = (1. / (N - 1)) * np.sum(diff_mat1, axis=0)
    diff_mat3 = np.sum(np.log2(diff_mat2), axis=0)
    return -diff_mat3


def calc_all_sigams(data, sigmas):
    batchs = 128
    num_of_bins = 8
    # bins = np.linspace(-1, 1, num_of_bins).astype(np.float32)
    # bins = stats.mstats.mquantiles(np.squeeze(data.reshape(1, -1)), np.linspace(0,1, num=num_of_bins))
    # data = bins[np.digitize(np.squeeze(data.reshape(1, -1)), bins) - 1].reshape(len(data), -1)

    batch_points = np.rint(np.arange(0, data.shape[0] + 1, batchs)).astype(dtype=np.int32)
    I_XT = []
    num_of_rand = min(800, data.shape[1])
    for sigma in sigmas:
        # print sigma
        I_XT_temp = 0
        for i in range(0, len(batch_points) - 1):
            new_data = data[batch_points[i]:batch_points[i + 1], :]
            rand_indexs = np.random.randint(0, new_data.shape[1], num_of_rand)
            new_data = new_data[:, :]
            N = new_data.shape[0]
            d = new_data.shape[1]
            diff_mat = np.linalg.norm(((new_data[:, np.newaxis, :] - new_data)), axis=2)
            # print diff_mat.shape, new_data.shape
            s0 = 0.2
            # DOTO -add leaveoneout validation
            res = minimize(optimiaze_func, s0, args=(diff_mat, d, N), method='nelder-mead',
                           options={'xtol': 1e-8, 'disp': False, 'maxiter': 6})
            eta = res.x
            diff_mat0 = - 0.5 * (diff_mat / (sigma ** 2 + eta ** 2))
            diff_mat1 = np.sum(np.exp(diff_mat0), axis=0)
            diff_mat2 = -(1.0 / N) * np.sum(np.log2((1.0 / N) * diff_mat1))
            I_XT_temp += diff_mat2 - d * np.log2((sigma ** 2) / (eta ** 2 + sigma ** 2))
            # print diff_mat2 - d*np.log2((sigma**2)/(eta**2+sigma**2))
        I_XT_temp /= len(batch_points)
        I_XT.append(I_XT_temp)
    sys.stdout.flush()
    return I_XT


def estimate_IY_by_network(data, labels, from_layer=0):
    if len(data.shape) > 2:
        input_size = data.shape[1:]
    else:
        input_size = data.shape[1]
    p_y_given_t_i = data
    acc_all = [0]
    if from_layer < 5:

        acc_all = []
        g1 = tf.Graph()  ## This is one graph
        with g1.as_default():
            # For each epoch and for each layer we calculate the best decoder - we train a 2 lyaer network
            cov_net = 4
            model = mo.Model(input_size, [400, 100, 50], labels.shape[1], 0.0001, '', cov_net=cov_net,
                             from_layer=from_layer)
            if from_layer < 5:
                optimizer = model.optimize
            init = tf.global_variables_initializer()
            num_of_ephocs = 50
            batch_size = 51
            batch_points = np.rint(np.arange(0, data.shape[0] + 1, batch_size)).astype(dtype=np.int32)
            if data.shape[0] not in batch_points:
                batch_points = np.append(batch_points, [data.shape[0]])
        with tf.Session(graph=g1) as sess:
            sess.run(init)
            if from_layer < 5:
                for j in range(0, num_of_ephocs):
                    for i in range(0, len(batch_points) - 1):
                        batch_xs = data[batch_points[i]:batch_points[i + 1], :]
                        batch_ys = labels[batch_points[i]:batch_points[i + 1], :]
                        feed_dict = {model.x: batch_xs, model.labels: batch_ys}
                        if cov_net == 1:
                            feed_dict[model.drouput] = 0.5
                        optimizer.run(feed_dict)
            p_y_given_t_i = []
            batch_size = 256
            batch_points = np.rint(np.arange(0, data.shape[0] + 1, batch_size)).astype(dtype=np.int32)
            if data.shape[0] not in batch_points:
                batch_points = np.append(batch_points, [data.shape[0]])
            for i in range(0, len(batch_points) - 1):
                batch_xs = data[batch_points[i]:batch_points[i + 1], :]
                batch_ys = labels[batch_points[i]:batch_points[i + 1], :]
                feed_dict = {model.x: batch_xs, model.labels: batch_ys}
                if cov_net == 1:
                    feed_dict[model.drouput] = 1
                p_y_given_t_i_local, acc = sess.run([model.prediction, model.accuracy],
                                                    feed_dict=feed_dict)
                acc_all.append(acc)
                if i == 0:
                    p_y_given_t_i = np.array(p_y_given_t_i_local)
                else:
                    p_y_given_t_i = np.concatenate((p_y_given_t_i, np.array(p_y_given_t_i_local)), axis=0)
                    # print ("The accuracy of layer number - {}  - {}".format(from_layer, np.mean(acc_all)))
    max_indx = len(p_y_given_t_i)
    labels_cut = labels[:max_indx, :]
    true_label_index = np.argmax(labels_cut, 1)
    s = np.log2(p_y_given_t_i[np.arange(len(p_y_given_t_i)), true_label_index])
    I_TY = np.mean(s[np.isfinite(s)])
    PYs = np.sum(labels_cut, axis=0) / labels_cut.shape[0]
    Hy = np.nansum(-PYs * np.log2(PYs + np.spacing(1)))
    I_TY = Hy + I_TY
    I_TY = I_TY if I_TY >= 0 else 0
    acc = np.mean(acc_all)
    sys.stdout.flush()
    return I_TY, acc


def calc_varitional_information(data, labels, model_path, layer_numer, num_of_layers, epoch_index, input_size,
                                layerSize, sigma, pys, ks,
                                search_sigma=False, estimate_y_by_network=False):
    """Calculate estimation of the information using vartional IB"""
    # Assumpations
    estimate_y_by_network = True
    # search_sigma = False
    data_x = data.reshape(data.shape[0], -1)

    if search_sigma:
        sigmas = np.linspace(0.2, 10, 20)
        sigmas = [0.2]

    else:
        sigmas = [sigma]
    if False:
        I_XT = calc_all_sigams(data_x, sigmas)
    else:
        I_XT = 0
    if estimate_y_by_network:

        I_TY, acc = estimate_IY_by_network(data, labels, from_layer=layer_numer)
    else:
        I_TY = 0
    with printoptions(precision=3, suppress=True, formatter={'float': '{: 0.3f}'.format}):
        print('[{0}:{1}] - I(X;T) - {2}, I(X;Y) - {3}, accuracy - {4}'.format(epoch_index, layer_numer,
                                                                              np.array(I_XT).flatten(), I_TY, acc))
    sys.stdout.flush()

    # I_est = mutual_inform[ation((data, labels[:, 0][:, None]), PYs, k=ks)
    # I_est,I_XT = 0, 0
    params = {}
    # params['DKL_YgX_YgT'] = DKL_YgX_YgT
    # params['pts'] = p_ts
    # params['H_Xgt'] = H_Xgt
    params['local_IXT'] = I_XT
    params['local_ITY'] = I_TY
    return params

def estimate_Information(Xs, Ys, Ts):
	"""Estimation of the MI from missing data based on k-means clustring"""
	estimate_IXT = ee.mi(Xs, Ts)
	estimate_IYT = ee.mi(Ys, Ts)
	# estimate_IXT1 = ee.mi(Xs, Ts)
	# estimate_IYT1 = ee.mi(Ys, Ts)
	return estimate_IXT, estimate_IYT