Spaces:
Build error
Build error
File size: 7,858 Bytes
96283ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
import functools
import tensorflow as tf
import numpy as np
from idnns.networks.utils import _convert_string_dtype
from idnns.networks.models import multi_layer_perceptron
from idnns.networks.models import deepnn
from idnns.networks.ops import *
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
def lazy_property(function):
attribute = '_cache_' + function.__name__
@property
@functools.wraps(function)
def decorator(self):
# print hasattr(self, attribute)
if not hasattr(self, attribute):
setattr(self, attribute, function(self))
return getattr(self, attribute)
return decorator
class Model:
"""A class that represent model of network"""
def __init__(self, input_size, layerSize, num_of_classes, learning_rate_local=0.001, save_file='',
activation_function=0, cov_net=False):
self.covnet = cov_net
self.input_size = input_size
self.layerSize = layerSize
self.all_layer_sizes = np.copy(layerSize)
self.all_layer_sizes = np.insert(self.all_layer_sizes, 0, input_size)
self.num_of_classes = num_of_classes
self._num_of_layers = len(layerSize) + 1
self.learning_rate_local = learning_rate_local
self._save_file = save_file
self.hidden = None
self.savers = []
if activation_function == 1:
self.activation_function = tf.nn.relu
elif activation_function == 2:
self.activation_function = None
else:
self.activation_function = tf.nn.tanh
self.prediction
self.optimize
self.accuracy
def initilizae_layer(self, name_scope, row_size, col_size, activation_function, last_hidden):
# Bulid layer of the network with weights and biases
weights = get_scope_variable(name_scope=name_scope, var="weights",
shape=[row_size, col_size],
initializer=tf.truncated_normal_initializer(mean=0.0, stddev=1.0 / np.sqrt(
float(row_size))))
biases = get_scope_variable(name_scope=name_scope, var='biases', shape=[col_size],
initializer=tf.constant_initializer(0.0))
self.weights_all.append(weights)
self.biases_all.append(biases)
variable_summaries(weights)
variable_summaries(biases)
with tf.variable_scope(name_scope) as scope:
input = tf.matmul(last_hidden, weights) + biases
if activation_function == None:
output = input
else:
output = activation_function(input, name='output')
self.inputs.append(input)
self.hidden.append(output)
return output
@property
def num_of_layers(self):
return self._num_of_layers
@property
def hidden_layers(self):
"""The hidden layers of the netowrk"""
if self.hidden is None:
self.hidden, self.inputs, self.weights_all, self.biases_all = [], [], [], []
last_hidden = self.x
if self.covnet == 1:
y_conv, self._drouput, self.hidden, self.inputs = deepnn(self.x)
elif self.covnet == 2:
y_c, self.hidden, self.inputs = multi_layer_perceptron(self.x, self.input_size, self.num_of_classes,
self.layerSize[0], self.layerSize[1])
else:
self._drouput = 'dr'
# self.hidden.append(self.x)
for i in range(1, len(self.all_layer_sizes)):
name_scope = 'hidden' + str(i - 1)
row_size, col_size = self.all_layer_sizes[i - 1], self.all_layer_sizes[i]
activation_function = self.activation_function
last_hidden = self.initilizae_layer(name_scope, row_size, col_size, activation_function,
last_hidden)
name_scope = 'final_layer'
row_size, col_size = self.layerSize[-1], self.num_of_classes
activation_function = tf.nn.softmax
last_hidden = self.initilizae_layer(name_scope, row_size, col_size, activation_function, last_hidden)
return self.hidden
@lazy_property
def prediction(self):
logits = self.hidden_layers[-1]
return logits
@lazy_property
def drouput(self):
return self._drouput
@property
def optimize(self):
optimizer = tf.train.AdamOptimizer(learning_rate=self.learning_rate_local).minimize(self.cross_entropy)
return optimizer
@lazy_property
def x(self):
return tf.placeholder(tf.float32, shape=[None, self.input_size], name='x')
@lazy_property
def labels(self):
return tf.placeholder(tf.float32, shape=[None, self.num_of_classes], name='y_true')
@lazy_property
def accuracy(self):
correct_prediction = tf.equal(tf.argmax(self.prediction, 1), tf.argmax(self.labels, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
tf.summary.scalar('accuracy', accuracy)
return accuracy
@lazy_property
def cross_entropy(self):
cross_entropy = tf.reduce_mean(
-tf.reduce_sum(self.labels * tf.log(tf.clip_by_value(self.prediction, 1e-50, 1.0)), reduction_indices=[1]))
tf.summary.scalar('cross_entropy', cross_entropy)
return cross_entropy
@property
def save_file(self):
return self._save_file
def inference(self, data):
"""Return the predication of the network with the given data"""
with tf.Session() as sess:
self.saver.restore(sess, './' + self.save_file)
feed_dict = {self.x: data}
pred = sess.run(self.prediction, feed_dict=feed_dict)
return pred
def inference_default(self, data):
session = tf.get_default_session()
feed_dict = {self.x: data}
pred = session.run(self.prediction, feed_dict=feed_dict)
return pred
def get_layer_with_inference(self, data, layer_index, epoch_index):
"""Return the layer activation's values with the results of the network"""
with tf.Session() as sess:
self.savers[epoch_index].restore(sess, './' + self.save_file + str(epoch_index))
feed_dict = {self.hidden_layers[layer_index]: data[:, 0:self.hidden_layers[layer_index]._shape[1]]}
pred, layer_values = sess.run([self.prediction, self.hidden_layers[layer_index]], feed_dict=feed_dict)
return pred, layer_values
def calc_layer_values(self, X, layer_index):
"""Return the layer's values"""
with tf.Session() as sess:
self.savers[-1].restore(sess, './' + self.save_file)
feed_dict = {self.x: X}
layer_values = sess.run(self.hidden_layers[layer_index], feed_dict=feed_dict)
return layer_values
def update_weights_and_calc_values_temp(self, d_w_i_j, layer_to_perturbe, i, j, X):
"""Update the weights of the given layer cacl the output and return it to the original values"""
if layer_to_perturbe + 1 >= len(self.hidden_layers):
scope_name = 'softmax_linear'
else:
scope_name = "hidden" + str(layer_to_perturbe)
weights = get_scope_variable(scope_name, "weights", shape=None, initializer=None)
session = tf.get_default_session()
weights_values = weights.eval(session=session)
weights_values_pert = weights_values
weights_values_pert[i, j] += d_w_i_j
set_value(weights, weights_values_pert)
feed_dict = {self.x: X}
layer_values = session.run(self.hidden_layers[layer_to_perturbe], feed_dict=feed_dict)
set_value(weights, weights_values)
return layer_values
def update_weights(self, d_w0, layer_to_perturbe):
"""Update the weights' values of the given layer"""
weights = get_scope_variable("hidden" + str(layer_to_perturbe), "weights", shape=None, initializer=None)
session = tf.get_default_session()
weights_values = weights.eval(session=session)
set_value(weights, weights_values + d_w0)
def get_wights_size(self, layer_to_perturbe):
"""Return the size of the given layer"""
weights = get_scope_variable("hidden" + str(layer_to_perturbe), "weights", shape=None, initializer=None)
return weights._initial_value.shape[1].value, weights._initial_value.shape[0].value
def get_layer_input(self, layer_to_perturbe, X):
"""Return the input of the given layer for the given data"""
session = tf.get_default_session()
inputs = self.inputs[layer_to_perturbe]
feed_dict = {self.x: X}
layer_values = session.run(inputs, feed_dict=feed_dict)
return layer_values
|