File size: 33,410 Bytes
96283ff
 
ca696d0
 
96283ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
"""Plot the networks in the information plane"""
import matplotlib
# matplotlib.use("TkAgg")
matplotlib.use("Agg")
import numpy as np
import _pickle as cPickle
# import cPickle
from scipy.interpolate import interp1d
import matplotlib.pyplot as plt
from matplotlib.collections import LineCollection
from matplotlib.colors import ListedColormap, BoundaryNorm
import scipy.io as sio
import scipy.stats as sis
import os
import matplotlib.animation as animation
import math
import os.path
import idnns.plots.utils as utils
import tkinter as tk
from numpy import linalg as LA

from tkinter import filedialog
LAYERS_COLORS  = ['red', 'blue', 'green', 'yellow', 'pink', 'orange']

def plot_all_epochs(gen_data, I_XT_array, I_TY_array, axes, epochsInds, f, index_i, index_j, size_ind,
                    font_size, y_ticks, x_ticks, colorbar_axis, title_str, axis_font, bar_font, save_name, plot_error = True,index_to_emphasis=1000):
    """Plot the infomration plane with the epochs in diffrnet colors """
    #If we want to plot the train and test error
    if plot_error:
        fig_strs = ['train_error','test_error','loss_train','loss_test' ]
        fig_data = [np.squeeze(gen_data[fig_str]) for fig_str in fig_strs]
        f1 = plt.figure(figsize=(12, 8))
        ax1 = f1.add_subplot(111)
        mean_sample = False if len(fig_data[0].shape)==1 else True
        if mean_sample:
            fig_data = [ np.mean(fig_data_s, axis=0) for fig_data_s in fig_data]
        for i in range(len(fig_data)):
            ax1.plot(epochsInds, fig_data[i],':', linewidth = 3 , label = fig_strs[i])
        ax1.legend(loc='best')
    f = plt.figure(figsize=(12, 8))
    axes = f.add_subplot(111)
    axes = np.array([[axes]])

    I_XT_array = np.squeeze(I_XT_array)
    I_TY_array = np.squeeze(I_TY_array)
    if len(I_TY_array[0].shape) >1:
        I_XT_array = np.mean(I_XT_array, axis=0)
        I_TY_array = np.mean(I_TY_array, axis=0)
    max_index = size_ind if size_ind != -1 else I_XT_array.shape[0]

    cmap = plt.get_cmap('gnuplot')
    #For each epoch we have diffrenet color
    colors = [cmap(i) for i in np.linspace(0, 1, epochsInds[max_index-1]+1)]
    #Change this if we have more then one network arch
    nums_arc= -1
    #Go over all the epochs and plot then with the right color
    for index_in_range in range(0, max_index):
        XT = I_XT_array[index_in_range, :]
        TY = I_TY_array[index_in_range, :]
        #If this is the index that we want to emphsis
        if epochsInds[index_in_range] ==index_to_emphasis:
            axes[index_i, index_j].plot(XT, TY, marker='o', linestyle=None, markersize=19, markeredgewidth=0.04,
                                        linewidth=2.1,
                                        color='g',zorder=10)
        else:
                axes[index_i, index_j].plot(XT[:], TY[:], marker='o', linestyle='-', markersize=12, markeredgewidth=0.01, linewidth=0.2,
                                color=colors[int(epochsInds[index_in_range])])
    utils.adjustAxes(axes[index_i, index_j], axis_font=axis_font, title_str=title_str, x_ticks=x_ticks,
                     y_ticks=y_ticks, x_lim=[0, 25.1], y_lim=None,
                     set_xlabel=index_i == axes.shape[0] - 1, set_ylabel=index_j == 0, x_label='$I(X;T)$',
                     y_label='$I(T;Y)$', set_xlim=False,
                     set_ylim=False, set_ticks=True, label_size=font_size)
    #Save the figure and add color bar
    if index_i ==axes.shape[0]-1 and index_j ==axes.shape[1]-1:
        utils.create_color_bar(f, cmap, colorbar_axis, bar_font, epochsInds, title='Epochs')
        f.savefig(save_name+'.jpg', dpi=500, format='jpg')


def plot_by_training_samples(I_XT_array, I_TY_array, axes, epochsInds, f, index_i, index_j, size_ind, font_size, y_ticks, x_ticks, colorbar_axis, title_str, axis_font, bar_font, save_name, samples_labels):
    """Print the final epoch of all the diffrenet training samples size """
    max_index = size_ind if size_ind!=-1 else I_XT_array.shape[2]-1
    cmap = plt.get_cmap('gnuplot')
    colors = [cmap(i) for i in np.linspace(0, 1, max_index+1)]
    #Print the final epoch
    nums_epoch= -1
    #Go over all the samples size and plot them with the right color
    for index_in_range in range(0, max_index):
        XT, TY = [], []
        for layer_index in range(0, I_XT_array.shape[4]):
                XT.append(np.mean(I_XT_array[:, -1, index_in_range, nums_epoch, layer_index], axis=0))
                TY.append(np.mean(I_TY_array[:, -1, index_in_range,nums_epoch, layer_index], axis=0))
        axes[index_i, index_j].plot(XT, TY, marker='o', linestyle='-', markersize=12, markeredgewidth=0.2, linewidth=0.5,
                         color=colors[index_in_range])
    utils.adjustAxes(axes[index_i, index_j], axis_font=axis_font, title_str=title_str, x_ticks=x_ticks, y_ticks=y_ticks,
                     x_lim=None, y_lim=None,
                     set_xlabel=index_i == axes.shape[0] - 1, set_ylabel=index_j == 0, x_label='$I(X;T)$',
                     y_label='$I(T;Y)$', set_xlim=True,
                     set_ylim=True, set_ticks=True, label_size=font_size)
    #Create color bar and save it
    if index_i == axes.shape[0] - 1 and index_j == axes.shape[1] - 1:
        utils.create_color_bar(f, cmap, colorbar_axis, bar_font, epochsInds, title='Training Data')
        f.savefig(save_name + '.jpg', dpi=150, format='jpg')

def calc_velocity(data, epochs):
    """Calculate the velocity (both in X and Y) for each layer"""
    vXs, vYs = [], []
    for layer_index in range(data.shape[5]):
        curernt_vXs = []
        current_VYs = []
        for epoch_index in range(len(epochs)-1):
            vx = np.mean(data[0,:,-1, -1, epoch_index+1,layer_index], axis=0) - np.mean(data[0,:,-1, -1, epoch_index,layer_index], axis=0)
            vx/= (epochs[epoch_index+1] - epochs[epoch_index])
            vy = np.mean(data[1, :, -1, -1, epoch_index + 1, layer_index], axis=0) - np.mean(data[1, :, -1, -1, epoch_index, layer_index],                                                                      axis=0)
            vy /= (epochs[epoch_index + 1] - epochs[epoch_index])
            current_VYs.append(vy)
            curernt_vXs.append(vx)
        vXs.append(curernt_vXs)
        vYs.append(current_VYs)
    return vXs,vYs

def update_line_specipic_points(nums, data, axes, to_do, font_size, axis_font):
    """Update the lines in the axes for snapshot of the whole process"""
    colors =LAYERS_COLORS
    x_ticks = [0, 2, 4, 6, 8, 10]
    #Go over all the snapshot
    for i in range(len(nums)):
        num = nums[i]
        #Plot the right layer
        for layer_num in range(data.shape[3]):
            axes[i].scatter(data[0, :, num, layer_num], data[1, :, num, layer_num], color = colors[layer_num], s = 105,edgecolors = 'black',alpha = 0.85)
        utils.adjustAxes(axes[i], axis_font=axis_font, title_str='', x_ticks=x_ticks, y_ticks=[], x_lim=None,
                         y_lim=None,
                         set_xlabel=to_do[i][0], set_ylabel=to_do[i][1], x_label='$I(X;T)$', y_label='$I(T;Y)$',
                         set_xlim=True, set_ylim=True,
                         set_ticks=True, label_size=font_size)

def update_line_each_neuron(num, print_loss, Ix, axes, Iy, train_data, accuracy_test, epochs_bins, loss_train_data, loss_test_data, colors, epochsInds,
                            font_size = 18, axis_font = 16, x_lim = [0,12.2], y_lim=[0, 1.08],x_ticks = [], y_ticks = []):
    """Update the figure of the infomration plane for the movie"""
    #Print the line between the points
    axes[0].clear()
    if len(axes)>1:
        axes[1].clear()
    #Print the points
    for layer_num in range(Ix.shape[2]):
        for net_ind in range(Ix.shape[0]):
            axes[0].scatter(Ix[net_ind,num, layer_num], Iy[net_ind,num, layer_num], color = colors[layer_num], s = 35,edgecolors = 'black',alpha = 0.85)
    title_str = 'Information Plane - Epoch number - ' + str(epochsInds[num])
    utils.adjustAxes(axes[0], axis_font, title_str, x_ticks, y_ticks, x_lim, y_lim, set_xlabel=True, set_ylabel=True,
                     x_label='$I(X;T)$', y_label='$I(T;Y)$')
    #Print the loss function and the error
    if len(axes)>1:
        axes[1].plot(epochsInds[:num], 1 - np.mean(accuracy_test[:, :num], axis=0), color='g')
        if print_loss:
            axes[1].plot(epochsInds[:num], np.mean(loss_test_data[:, :num], axis=0), color='y')
        nereast_val = np.searchsorted(epochs_bins, epochsInds[num], side='right')
        axes[1].set_xlim([0,epochs_bins[nereast_val]])
        axes[1].legend(('Accuracy', 'Loss Function'), loc='best')

def update_line(num, print_loss, data, axes, epochsInds, test_error, test_data, epochs_bins, loss_train_data, loss_test_data, colors,
                font_size = 18, axis_font=16, x_lim = [0,12.2], y_lim=[0, 1.08], x_ticks = [], y_ticks = []):
    """Update the figure of the infomration plane for the movie"""
    #Print the line between the points
    cmap = ListedColormap(LAYERS_COLORS)
    segs = []
    for i in range(0, data.shape[1]):
        x = data[0, i, num, :]
        y = data[1, i, num, :]
        points = np.array([x, y]).T.reshape(-1, 1, 2)
        segs.append(np.concatenate([points[:-1], points[1:]], axis=1))
    segs = np.array(segs).reshape(-1, 2, 2)
    axes[0].clear()
    if len(axes)>1:
        axes[1].clear()
    lc = LineCollection(segs, cmap=cmap, linestyles='solid',linewidths = 0.3, alpha = 0.6)
    lc.set_array(np.arange(0,5))
    #Print the points
    for layer_num in range(data.shape[3]):
        axes[0].scatter(data[0, :, num, layer_num], data[1, :, num, layer_num], color = colors[layer_num], s = 35,edgecolors = 'black',alpha = 0.85)
    axes[1].plot(epochsInds[:num], 1 - np.mean(test_error[:, :num], axis=0), color ='r')

    title_str = 'Information Plane - Epoch number - ' + str(epochsInds[num])
    utils.adjustAxes(axes[0], axis_font, title_str, x_ticks, y_ticks, x_lim, y_lim, set_xlabel=True, set_ylabel=True,
                     x_label='$I(X;T)$', y_label='$I(T;Y)$')
    title_str = 'Precision as function of the epochs'
    utils.adjustAxes(axes[1], axis_font, title_str, x_ticks, y_ticks, x_lim, y_lim, set_xlabel=True, set_ylabel=True,
                     x_label='# Epochs', y_label='Precision')


def plot_animation(name_s, save_name):
    """Plot the movie for all the networks in the information plane"""
    # If we want to print the loss function also
    print_loss  = False
    #The bins that we extened the x axis of the accuracy each time
    epochs_bins = [0, 500, 1500, 3000, 6000, 10000, 20000]

    data_array = utils.get_data(name_s[0][0])
    data = data_array['infomration']
    epochsInds = data_array['epochsInds']
    loss_train_data = data_array['loss_train']
    loss_test_data = data_array['loss_test_data']
    f, (axes) = plt.subplots(2, 1)
    f.subplots_adjust(left=0.14, bottom=0.1, right=.928, top=0.94, wspace=0.13, hspace=0.55)
    colors = LAYERS_COLORS
    #new/old version
    if False:
        Ix = np.squeeze(data[0,:,-1,-1, :, :])
        Iy = np.squeeze(data[1,:,-1,-1, :, :])
    else:
        Ix = np.squeeze(data[0, :, -1, -1, :, :])[np.newaxis,:,:]
        Iy = np.squeeze(data[1, :, -1, -1, :, :])[np.newaxis,:,:]
    #Interploation of the samplings (because we don't cauclaute the infomration in each epoch)
    interp_data_x = interp1d(epochsInds,  Ix, axis=1)
    interp_data_y = interp1d(epochsInds,  Iy, axis=1)
    new_x = np.arange(0,epochsInds[-1])
    new_data  = np.array([interp_data_x(new_x), interp_data_y(new_x)])
    """"
    train_data = interp1d(epochsInds,  np.squeeze(train_data), axis=1)(new_x)
    test_data = interp1d(epochsInds,  np.squeeze(test_data), axis=1)(new_x)
    """
    if print_loss:
        loss_train_data =  interp1d(epochsInds,  np.squeeze(loss_train_data), axis=1)(new_x)
        loss_test_data=interp1d(epochsInds,  np.squeeze(loss_test_data), axis=1)(new_x)
    line_ani = animation.FuncAnimation(f, update_line, len(new_x), repeat=False,
                                       interval=1, blit=False, fargs=(print_loss, new_data, axes,new_x,train_data,test_data,epochs_bins, loss_train_data,loss_test_data, colors))
    Writer = animation.writers['ffmpeg']
    writer = Writer(fps=100)
    #Save the movie
    line_ani.save(save_name+'_movie2.mp4',writer=writer,dpi=250)
    plt.show()


def plot_animation_each_neuron(name_s, save_name, print_loss=False):
    """Plot the movie for all the networks in the information plane"""
    # If we want to print the loss function also
    #The bins that we extened the x axis of the accuracy each time
    epochs_bins = [0, 500, 1500, 3000, 6000, 10000, 20000]
    data_array = utils.get_data(name_s[0][0])
    data = np.squeeze(data_array['information'])

    f, (axes) = plt.subplots(1, 1)
    axes = [axes]
    f.subplots_adjust(left=0.14, bottom=0.1, right=.928, top=0.94, wspace=0.13, hspace=0.55)
    colors = LAYERS_COLORS
    #new/old version
    Ix = np.squeeze(data[0,:, :, :])
    Iy = np.squeeze(data[1,:, :, :])
    #Interploation of the samplings (because we don't cauclaute the infomration in each epoch)
    #interp_data_x = interp1d(epochsInds,  Ix, axis=1)
    #interp_data_y = interp1d(epochsInds,  Iy, axis=1)
    #new_x = np.arange(0,epochsInds[-1])
    #new_data  = np.array([interp_data_x(new_x), interp_data_y(new_x)])
    """"
    train_data = interp1d(epochsInds,  np.squeeze(train_data), axis=1)(new_x)
    test_data = interp1d(epochsInds,  np.squeeze(test_data), axis=1)(new_x)

    if print_loss:
        loss_train_data =  interp1d(epochsInds,  np.squeeze(loss_train_data), axis=1)(new_x)
        loss_test_data=interp1d(epochsInds,  np.squeeze(loss_test_data), axis=1)(new_x)
    """
    line_ani = animation.FuncAnimation(f, update_line_each_neuron, Ix.shape[1], repeat=False,
                                       interval=1, blit=False, fargs=(print_loss, Ix, axes,Iy,train_data,test_data,epochs_bins, loss_train_data,loss_test_data, colors,epochsInds))
    Writer = animation.writers['ffmpeg']
    writer = Writer(fps=100)
    #Save the movie
    line_ani.save(save_name+'_movie.mp4',writer=writer,dpi=250)
    plt.show()


def plot_snapshots(name_s, save_name, i, time_stemps=[13, 180, 963],font_size = 36,axis_font = 28,fig_size = (14, 6)):
    """Plot snapshots of the given network"""
    f, (axes) = plt.subplots(1, len(time_stemps), sharey=True, figsize=fig_size)
    f.subplots_adjust(left=0.095, bottom=0.18, right=.99, top=0.97, wspace=0.03, hspace=0.03)
    #Adding axes labels
    to_do = [[True, True], [True, False], [True, False]]
    data_array = utils.get_data(name_s)
    data = np.squeeze(data_array['information'])
    update_line_specipic_points(time_stemps, data, axes, to_do, font_size, axis_font)
    f.savefig(save_name + '.jpg', dpi=200, format='jpg')


def load_figures(mode, str_names=None):
    """Creaet new figure based on the mode of it
    This function is really messy and need to rewrite """
    if mode == 0:
        font_size = 34
        axis_font = 28
        bar_font = 28
        fig_size = (14, 6.5)
        title_strs = [['', '']]
        f, (axes) = plt.subplots(1, 2, sharey=True, figsize=fig_size)
        sizes = [[-1, -1]]
        colorbar_axis = [0.935, 0.14, 0.027, 0.75]
        axes = np.vstack(axes).T
        f.subplots_adjust(left=0.09, bottom=0.15, right=.928, top=0.94, wspace=0.03, hspace=0.04)
        yticks = [0, 1, 2, 3]
        xticks = [3, 6, 9, 12, 15]
    # for 3 rows with 2 colmus
    if mode == 1:
        font_size = 34
        axis_font = 26
        bar_font = 28
        fig_size = (14, 19)
        xticks = [1, 3, 5, 7, 9, 11]
        yticks = [0, 0.2, 0.4, 0.6, 0.8, 1]
        title_strs = [['One hidden layer', 'Two hidden layers'], ['Three hidden layers', 'Four hidden layers'],
                      ['Five hidden layers', 'Six hidden layers']]

        title_strs = [['5 bins', '12 bins'], ['18 bins', '25 bins'],
                      ['35 bins', '50 bins']]
        f, (axes) = plt.subplots(3, 2, sharex=True, sharey=True, figsize=fig_size)
        f.subplots_adjust(left=0.09, bottom=0.08, right=.92, top=0.94, wspace=0.03, hspace=0.15)
        colorbar_axis = [0.93, 0.1, 0.035, 0.76]
        sizes = [[1010, 1010], [1017, 1020], [1700, 920]]

    # for 2 rows with 3 colmus
    if mode == 11:
        font_size = 34
        axis_font = 26
        bar_font = 28
        fig_size = (14, 9)
        xticks = [1, 3, 5, 7, 9, 11]
        yticks = [0, 0.2, 0.4, 0.6, 0.8, 1]
        title_strs = [['One hidden layer', 'Two hidden layers','Three hidden layers'], ['Four hidden layers',
                      'Five hidden layers', 'Six hidden layers']]

        title_strs = [['5 Bins', '10 Bins', '15 Bins'], ['20 Bins',
                                                                                         '25 Bins',
                                                                                         '35 Bins']]
        f, (axes) = plt.subplots(2, 3, sharex=True, sharey=True, figsize=fig_size)
        f.subplots_adjust(left=0.09, bottom=0.1, right=.92, top=0.94, wspace=0.03, hspace=0.15)
        colorbar_axis = [0.93, 0.1, 0.035, 0.76]
        sizes = [[1010, 1010, 1017], [1020, 1700, 920]]
    # one figure
    if mode == 2 or mode ==6:
        axis_font = 28
        bar_font = 28
        fig_size = (14, 10)
        font_size = 34
        f, (axes) = plt.subplots(1, len(str_names), sharey=True, figsize=fig_size)
        if len(str_names) == 1:
            axes = np.vstack(np.array([axes]))
        f.subplots_adjust(left=0.097, bottom=0.12, right=.87, top=0.99, wspace=0.03, hspace=0.03)
        colorbar_axis = [0.905, 0.12, 0.03, 0.82]
        xticks = [1, 3, 5, 7, 9, 11]
        yticks = [0, 0.2, 0.4, 0.6, 0.8, 1]

        #yticks = [0, 1, 2, 3, 3.5]
        #xticks = [2, 5, 8, 11, 14, 17]
        sizes = [[-1]]
        title_strs = [['', '']]
    # one figure with error bar
    if mode == 3:
        fig_size = (14, 10)
        font_size = 36
        axis_font = 28
        bar_font = 25
        title_strs = [['']]
        f, (axes) = plt.subplots(1, len(str_names), sharey=True, figsize=fig_size)
        if len(str_names) == 1:
            axes = np.vstack(np.array([axes]))
        f.subplots_adjust(left=0.097, bottom=0.12, right=.90, top=0.99, wspace=0.03, hspace=0.03)
        sizes = [[-1]]
        colorbar_axis = [0.933, 0.125, 0.03, 0.83]
        xticks = [0, 2, 4, 6, 8, 10, 12]
        yticks = [0.3, 0.4, 0.6, 0.8, 1]
        # two figures second
    if mode == 4:
        font_size = 27
        axis_font = 18
        bar_font = 23
        fig_size = (14, 6.5)
        title_strs = [['', '']]
        f, (axes) = plt.subplots(1, 2, figsize=fig_size)
        sizes = [[-1, -1]]
        colorbar_axis = [0.948, 0.08, 0.025, 0.81]
        axes = np.vstack(axes).T
        f.subplots_adjust(left=0.07, bottom=0.15, right=.933, top=0.94, wspace=0.12, hspace=0.04)
        #yticks = [0, 0.2, 0.4, 0.6, 0.8, 1]
        #xticks = [1, 3, 5, 7, 9, 11]

        yticks = [0,  1,  2, 3, 3]
        xticks = [2, 5, 8, 11,14, 17]
    return font_size, axis_font, bar_font, colorbar_axis, sizes, yticks, xticks,title_strs, f, axes


def plot_figures(str_names, mode, save_name):
    """Plot the data in the given names with the given mode"""
    [font_size, axis_font, bar_font, colorbar_axis, sizes, yticks, xticks,title_strs, f, axes] = load_figures(mode, str_names)
    #Go over all the files
    for i in range(len(str_names)):
        for j in range(len(str_names[i])):
            name_s = str_names[i][j]
            #Load data for the given file
            data_array = utils.get_data(name_s)
            data  = np.squeeze(np.array(data_array['information']))
            I_XT_array = np.array(extract_array(data, 'local_IXT'))
            I_TY_array = np.array(extract_array(data, 'local_ITY'))
            #I_XT_array = np.array(extract_array(data, 'IXT_vartional'))
            #I_TY_array = np.array(extract_array(data, 'ITY_vartional'))
            epochsInds = data_array['params']['epochsInds']
            #I_XT_array = np.squeeze(np.array(data))[:, :, 0]
            #I_TY_array = np.squeeze(np.array(data))[:, :, 1]
            #Plot it
            if mode ==3:
                plot_by_training_samples(I_XT_array, I_TY_array, axes, epochsInds, f, i, j, sizes[i][j], font_size, yticks, xticks, colorbar_axis, title_strs[i][j], axis_font, bar_font, save_name)
            elif mode ==6:
                plot_norms(axes, epochsInds,data_array['norms1'],data_array['norms2'])
            else:
                plot_all_epochs(data_array, I_XT_array, I_TY_array, axes, epochsInds, f, i, j, sizes[i][j], font_size, yticks, xticks,
                                colorbar_axis, title_strs[i][j], axis_font, bar_font, save_name)
    plt.show()


def plot_norms(axes, epochsInds, norms1, norms2):
    """Plot the norm l1 and l2 of the given name"""
    axes.plot(epochsInds, np.mean(norms1[:,0,0,:], axis=0), color='g')
    axes.plot(epochsInds, np.mean(norms2[:,0,0,:], axis=0), color='b')
    axes.legend(('L1 norm', 'L2 norm'))
    axes.set_xlabel('Epochs')

def plot_pearson(name):
    """Plot the pearsin coeff of  the neurons for each layer"""
    data_array = utils.get_data(name)
    ws = data_array['weights']
    f = plt.figure(figsize=(12, 8))
    axes = f.add_subplot(111)
    #The number of neurons in each layer -
    #TODO need to change it to be auto
    sizes =[10,7, 5, 4,3,2 ]
    #The mean of pearson coeffs of all the layers
    pearson_mean =[]
    #Go over all the layers
    for layer in range(len(sizes)):
        inner_pearson_mean =[]
        #Go over all the weights in the layer
        for k in range(len(ws)):
            ws_current = np.squeeze(ws[k][0][0][-1])
            #Go over the neurons
            for neuron in range(len(ws_current[layer])):
                person_t = []
                #Go over the rest of the neurons
                for neuron_second in range(neuron+1, len(ws_current[layer])):
                    pearson_c, p_val =sis.pearsonr(ws_current[layer][neuron], ws_current[layer][neuron_second])
                    person_t.append(pearson_c)
            inner_pearson_mean.append(np.mean(person_t))
        pearson_mean.append(np.mean(inner_pearson_mean))
    #Plot the coeff
    axes.bar(np.arange(1,7), np.abs(np.array(pearson_mean))*np.sqrt(sizes), align='center')
    axes.set_xlabel('Layer')
    axes.set_ylabel('Abs(Pearson)*sqrt(N_i)')
    rects = axes.patches
    # Now make some labels
    labels = ["L%d (%d nuerons)" % (i, j) for i, j in zip(range(len(rects)), sizes)]
    plt.xticks(np.arange(1,7), labels)


def update_axes(axes, xlabel, ylabel, xlim, ylim, title, xscale, yscale, x_ticks, y_ticks, p_0, p_1
                ,font_size = 30, axis_font = 25,legend_font = 16 ):
    """adjust the axes to the ight scale/ticks and labels"""
    categories =6*['']
    labels = ['$10^{-5}$', '$10^{-4}$', '$10^{-3}$', '$10^{-2}$', '$10^{-1}$', '$10^0$', '$10^1$']
    #The legents of the mean and the std
    leg1 = plt.legend(p_0, categories, title=r'$\|Mean\left(\nabla{W_i}\right)\|$', loc='best',fontsize = legend_font,markerfirst = False, handlelength = 5)
    leg2 = plt.legend(p_1, categories, title=r'$STD\left(\nabla{W_i}\right)$', loc='best',fontsize = legend_font ,markerfirst = False,handlelength = 5)
    leg1.get_title().set_fontsize('21')  # legend 'Title' fontsize
    leg2.get_title().set_fontsize('21')  # legend 'Title' fontsize
    plt.gca().add_artist(leg1)
    plt.gca().add_artist(leg2)
    utils.adjustAxes(axes, axis_font=20, title_str='', x_ticks=x_ticks, y_ticks=y_ticks, x_lim=xlim, y_lim=ylim,
                     set_xlabel=True, set_ylabel=True, x_label=xlabel, y_label=ylabel, set_xlim=True, set_ylim=True,
                     set_ticks=True, label_size=font_size, set_yscale=True,
                     set_xscale=True, yscale=yscale, xscale=xscale, ytick_labels=labels, genreal_scaling=True)



def extract_array(data, name):
    results = [[data[j,k][name] for k in range(data.shape[1])] for j in range(data.shape[0])]
    return results

def update_bars_num_of_ts(num, p_ts, H_Xgt,DKL_YgX_YgT, axes, ind_array):
    axes[1].clear()
    axes[2].clear()
    axes[0].clear()
    current_pts =p_ts[num]
    current_H_Xgt = H_Xgt[num]
    current_DKL_YgX_YgT = DKL_YgX_YgT[num]
    num_of_t = [c_pts.shape[0] for c_pts in current_pts]
    x = range(len(num_of_t))
    axes[0].bar(x, num_of_t)
    axes[0].set_title('Number of Ts in every layer - Epoch number - {0}'.format(ind_array[num]))
    axes[0].set_xlabel('Layer Number')
    axes[0].set_ylabel('# of Ts')
    axes[0].set_ylim([0, 800])
    h_list, dkl_list = [], []
    for i in range(len(current_pts)):
        h_list.append(-np.dot(current_H_Xgt[i],current_pts[i]))
        dkl_list.append(np.dot(current_DKL_YgX_YgT[i].T, current_pts[i]))
    axes[1].bar(x,h_list)
    axes[2].bar(x,dkl_list)

    axes[2].bar(x, dkl_list)
    axes[1].set_title('H(X|T)', title_size = 16)
    axes[1].set_xlabel('Layer Number')
    axes[1].set_ylabel('H(X|T)')

    axes[2].set_title('DKL[p(y|x)||p(y|t)]',fontsize = 16)
    axes[2].set_xlabel('Layer Number')
    axes[2].set_ylabel('DKL[p(y|x)||p(y|t)]',fontsize = 16)

def update_bars_entropy(num, H_Xgt,DKL_YgX_YgT, axes, ind_array):
    axes[0].clear()
    current_H_Xgt =np.mean(H_Xgt[num], axis=0)
    x = range(len(current_H_Xgt))
    axes[0].bar(x, current_H_Xgt)
    axes[0].set_title('H(X|T) in every layer - Epoch number - {0}'.format(ind_array[num]))
    axes[0].set_xlabel('Layer Number')
    axes[0].set_ylabel('# of Ts')


def plot_hist(str_name, save_name='dist'):
    data_array = utils.get_data(str_name)
    params = np.squeeze(np.array(data_array['information']))
    ind_array = data_array['params']['epochsInds']
    DKL_YgX_YgT = utils.extract_array(params, 'DKL_YgX_YgT')
    p_ts = utils.extract_array(params, 'pts')
    H_Xgt = utils.extract_array(params, 'H_Xgt')

    f, (axes) = plt.subplots(3, 1)
    #axes = [axes]
    f.subplots_adjust(left=0.14, bottom=0.1, right=.928, top=0.94, wspace=0.13, hspace=0.55)
    colors = LAYERS_COLORS
    line_ani = animation.FuncAnimation(f, update_bars_num_of_ts, len(p_ts), repeat=False,
                                       interval=1, blit=False, fargs=[p_ts,H_Xgt,DKL_YgX_YgT, axes,ind_array])
    Writer = animation.writers['ffmpeg']
    writer = Writer(fps=50)
    #Save the movie
    line_ani.save(save_name+'_movie.mp4',writer=writer,dpi=250)
    plt.show()

def plot_alphas(str_name, save_name='dist'):
    data_array = utils.get_data(str_name)
    params = np.squeeze(np.array(data_array['information']))
    I_XT_array = np.squeeze(np.array(extract_array(params, 'local_IXT')))
    """"
    for i in range(I_XT_array.shape[2]):
        f1, axes1 = plt.subplots(1, 1)

        axes1.plot(I_XT_array[:,:,i])
    plt.show()
    return
    """
    I_XT_array_var = np.squeeze(np.array(extract_array(params, 'IXT_vartional')))
    I_TY_array_var = np.squeeze(np.array(extract_array(params, 'ITY_vartional')))

    I_TY_array = np.squeeze(np.array(extract_array(params, 'local_ITY')))
    """
    f1, axes1 = plt.subplots(1, 1)
    #axes1.plot(I_XT_array,I_TY_array)
    f1, axes2 = plt.subplots(1, 1)

    axes1.plot(I_XT_array ,I_TY_array_var)
    axes2.plot(I_XT_array ,I_TY_array)
    f1, axes1 = plt.subplots(1, 1)
    axes1.plot(I_TY_array, I_TY_array_var)
    axes1.plot([0, 1.1], [0, 1.1], transform=axes1.transAxes)
    #axes1.set_title('Sigmma=' + str(sigmas[i]))
    axes1.set_ylim([0, 1.1])
    axes1.set_xlim([0, 1.1])
    plt.show()
    return
    """
    #for i in range()
    sigmas = np.linspace(0, 0.3, 20)

    for i in range(0,20):
        print (i, sigmas[i])
        f1, axes1 = plt.subplots(1, 1)
        axes1.plot(I_XT_array, I_XT_array_var[:,:,i], linewidth=5)
        axes1.plot([0, 15.1], [0, 15.1], transform=axes1.transAxes)
        axes1.set_title('Sigmma=' +str(sigmas[i]))
        axes1.set_ylim([0,15.1])
        axes1.set_xlim([0,15.1])
    plt.show()
    return
    epochs_s = data_array['params']['epochsInds']
    f, axes = plt.subplots(1, 1)
    #epochs_s = []
    colors = LAYERS_COLORS
    linestyles  = [ '--', '-.', '-','', ' ',':', '']
    epochs_s =[0, -1]
    for j in epochs_s:
        for i  in range(0, I_XT_array.shape[1]):

            axes.plot(sigmas, I_XT_array_var[j,i,:],color = colors[i], linestyle = linestyles[j], label='Layer-'+str(i) +' Epoch - ' +str(epochs_s[j]))
    title_str = 'I(X;T) for different layers as function of $\sigma$ (The width of the gaussian)'
    x_label = '$\sigma$'
    y_label = '$I(X;T)$'
    x_lim = [0, 3]
    utils.adjustAxes(axes, axis_font=20, title_str=title_str, x_ticks=[], y_ticks=[], x_lim=x_lim, y_lim=None,
                     set_xlabel=True, set_ylabel=True, x_label=x_label, y_label=y_label, set_xlim=True, set_ylim=False,
                     set_ticks=False,
                     label_size=20, set_yscale=False,
                     set_xscale=False, yscale=None, xscale=None, ytick_labels='', genreal_scaling=False)
    axes.legend()
    plt.show()
if __name__ == '__main__':
    #The action the you want to plot
    #Plot snapshots of all the networks
    TIME_STEMPS = 'time-stemp'
    #create movie of the networks
    MOVIE = 'movie'
    #plot networks with diffrenet number of layers
    ALL_LAYERS = 'all_layers'
    #plot networks with 5% of the data and with 80%
    COMPRAED_PERCENT = 'compare_percent'
    #plot the infomration curves for the networks with diffrenet percent of the data
    ALL_SAMPLES = 'all_samples'
    #Choose whice figure to plot
    action = COMPRAED_PERCENT
    prex = 'jobsFiles/'
    sofix = '.pickle'
    prex2 = '/Users/ravidziv/PycharmProjects/IDNNs/jobs/'
    #plot above action, the norms, the gradients and the pearson coeffs
    do_plot_action, do_plot_norms, do_plot_pearson = True, False, False
    do_plot_eig = False
    plot_movie = False
    do_plot_time_stepms = False
    #str_names = [[prex2+'fo_layerSizes=10,7,5,4,3_LastEpochsInds=9998_nRepeats=1_batch=3563_DataName=reg_1_nEpoch=10000_lr=0.0004_nEpochInds=964_samples=1_nDistSmpls=1/']]
    if action == TIME_STEMPS or action == MOVIE:
        index = 1
        name_s = prex2+ 'g_layerSizes=10,7,5,4,3_LastEpochsInds=9998_nRepeats=40_batch=3563_DataName=var_u_nEpoch=10000_lr=0.0002_nEpochInds=964_samples=1_nDistSmpls=1/'
        name_s = prex2 +'r_DataName=MNIST_sampleLen=1_layerSizes=400,200,150,60,50,40,30_lr=0.0002_nEpochInds=677_nRepeats=1_LastEpochsInds=1399_nDistSmpls=1_nEpoch=1400_batch=2544/'
        if action ==TIME_STEMPS:
            save_name = '3_time_series'
            #plot_snapshots(name_s, save_name, index)
        else:
            save_name  = 'genreal'
            plot_animation(name_s, save_name)
    else:
        if action ==ALL_LAYERS:
            mode =11
            save_name = ALL_LAYERS
            str_names = [[prex + 'ff3_5_198.pickle', prex+ 'ff3_4_198.pickle',prex + 'ff3_3_198.pickle'],[prex + 'ff3_2_198.pickle',prex + 'ff3_1_198.pickle',prex + 'ff4_1_10.pickle']]
            str_names[1][2] = prex2+'g_layerSizes=10,7,5,4,4,3_LastEpochsInds=9998_nRepeats=20_batch=3563_DataName=var_u_nEpoch=10000_lr=0.0004_nEpochInds=964_samples=1_nDistSmpls=1/'
            str_names = [[prex2 +'nbins8_DataName=var_u_sampleLen=1_layerSizes=10,7,5,4,3_lr=0.0004_nEpochInds=964_nRepeats=5_LastEpochsInds=9998_nDistSmpls=1_nEpoch=10000_batch=4096/',
                          prex2 +'nbins12_DataName=var_u_sampleLen=1_layerSizes=10,7,5,4,3_lr=0.0004_nEpochInds=964_nRepeats=5_LastEpochsInds=9998_nDistSmpls=1_nEpoch=10000_batch=4096/',
                          prex2 +'nbins18_DataName=var_u_sampleLen=1_layerSizes=10,7,5,4,3_lr=0.0004_nEpochInds=964_nRepeats=5_LastEpochsInds=9998_nDistSmpls=1_nEpoch=10000_batch=4096/']
                         ,[prex2 +'nbins25_DataName=var_u_sampleLen=1_layerSizes=10,7,5,4,3_lr=0.0004_nEpochInds=964_nRepeats=5_LastEpochsInds=9998_nDistrSmpls=1_nEpoch=10000_batch=4096/',
                           prex2 +'nbins35_DataName=var_u_sampleLen=1_layerSizes=10,7,5, 4,3_lr=0.0004_nEpochInds=964_nRepeats=5_LastEpochsInds=9998_nDistSmpls=1_nEpoch=10000_batch=4096/',
                           prex2 + 'nbins50_DataName=var_u_sampleLen=1_layerSizes=10,7,5,4,3_lr=0.0004_nEpochInds=964_nRepeats=5_LastEpochsInds=9998_nDistSmpls=1_nEpoch=10000_batch=4096/'                         ]]
        elif action == COMPRAED_PERCENT:
            save_name = COMPRAED_PERCENT
            #mode =0
            mode = 2
            str_names    = [[prex + 'ff4_1_10.pickle', prex + 'ff3_1_198.pickle']]
        elif action == ALL_SAMPLES:
            save_name = ALL_SAMPLES
            mode =3
            str_names = [[prex+'t_32_1.pickle']]
        root = tk.Tk()
        root.withdraw()
        file_path = filedialog.askopenfilename()
        str_names = [[('/').join(file_path.split('/')[:-1]) + '/']]
        if do_plot_action:
            plot_figures(str_names, mode, save_name)
        if do_plot_norms:
            plot_norms(str_names)
        if do_plot_pearson:
            plot_pearson(str_names)
        if plot_movie:
            plot_animation_each_neuron(str_names, save_name)
        if do_plot_eig:
            pass
        if do_plot_time_stepms:
            plot_snapshots(str_names[0][0], save_name, 1)

            #plot_eigs_movie(str_names)
    plt.show()