Spaces:
Build error
Build error
File size: 9,893 Bytes
96283ff ca696d0 96283ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
import matplotlib
#matplotlib.use("TkAgg")
matplotlib.use("Agg")
import scipy.io as sio
import matplotlib.pyplot as plt
import os
import numpy as np
import sys
if sys.version_info >= (3, 0):
import _pickle as cPickle
else:
import cPickle
def update_axes(axes, f, xlabel, ylabel, xlim, ylim, title='', xscale=None, yscale=None, x_ticks=None, y_ticks=None,
p_0=None, p_1=None, p_3=None, p_4=None,
p_5=None, title_size=22):
"""adjust the axes to the ight scale/ticks and labels"""
font_size = 30
axis_font = 25
legend_font = 16
categories = 6 * ['']
labels = ['$10^{-4}$', '$10^{-3}$', '$10^{-2}$', '$10^{-1}$', '$10^0$', '$10^1$']
# If we want grey line in the midle
# axes.axvline(x=370, color='grey', linestyle=':', linewidth = 4)
# The legents of the mean and the std
"""
if p_0:
leg1 = f.legend([p_0[0],p_0[1],p_0[2],p_0[3],p_0[4], p_0[5]], categories, title=r'$\|Mean\left(\nabla{W_i}\right)\|$',bbox_to_anchor=(0.09, 0.95), loc=2,fontsize = legend_font,markerfirst = False, handlelength = 5)
leg1.get_title().set_fontsize('21') # legend 'Title' fontsize
axes.add_artist(leg1)
if p_1:
leg2 = f.legend([p_1[0],p_1[1],p_1[2],p_1[3],p_1[4], p_1[5]], categories, title=r'$Variance\left(\nabla{W_i}\right)$', loc=2,bbox_to_anchor=(0.25, 0.95), fontsize = legend_font ,markerfirst = False,handlelength = 5)
leg2.get_title().set_fontsize('21') # legend 'Title' fontsize
axes.add_artist(leg2)
if p_3:
leg2 = f.legend([p_3[0], p_3[1], p_3[2], p_3[3], p_3[4], p_3[5]], categories,
title=r'$SNR\left(\nabla{W_i}\right)$', loc=3, fontsize=legend_font,
markerfirst=False, handlelength=5,bbox_to_anchor=(0.15, 0.1))
leg2.get_title().set_fontsize('21') # legend 'Title'
if p_4:
leg2 = f.legend([p_4[0], p_4[1], p_4[2], p_4[3], p_4[4], p_4[5]], categories,
title=r'$\log\left(1+ SNR\left(\nabla{W_i}\right)\right)$', loc=3, fontsize=legend_font,
markerfirst=False, handlelength=5, bbox_to_anchor=(0.15, 0.1))
leg2.get_title().set_fontsize('21') # legend 'Title'
if p_5:
pass
#leg2 = axes.legend(handles=[r'$\frac{|d Error|}{STD\left(Error)\right)}$'], loc=3, fontsize=legend_font,
# bbox_to_anchor=(0.15, 0.1))
#leg2.get_title().set_fontsize('21')
"""
# plt.gca().add_artist(leg2)
axes.set_xscale(xscale)
axes.set_yscale(yscale)
axes.set_xlabel(xlabel, fontsize=font_size)
axes.set_ylabel(ylabel, fontsize=font_size)
axes.xaxis.set_major_formatter(matplotlib.ticker.ScalarFormatter())
axes.yaxis.set_major_formatter(matplotlib.ticker.ScalarFormatter())
if y_ticks:
axes.set_xticks(x_ticks)
axes.set_yticks(y_ticks)
axes.tick_params(axis='x', labelsize=axis_font)
axes.tick_params(axis='y', labelsize=axis_font)
axes.xaxis.major.formatter._useMathText = True
axes.set_yticklabels(labels, fontsize=font_size)
axes.set_title(title, fontsize=title_size)
axes.xaxis.set_major_formatter(matplotlib.ticker.ScalarFormatter(useMathText=True))
axes.set_xlim(xlim)
if ylim:
axes.set_ylim(ylim)
def update_axes_norms(axes, xlabel, ylabel):
"""Adjust the axes of the norms figure with labels/ticks"""
font_size = 30
axis_font = 25
legend_font = 16
# the legends
categories = [r'$\|W_1\|$', r'$\|W_2\|$', r'$\|W_3\|$', r'$\|W_4\|$', r'$\|W_5\|$', r'$\|W_6\|$']
# Grey line in the middle
axes.axvline(x=370, color='grey', linestyle=':', linewidth=4)
axes.legend(categories, loc='best', fontsize=legend_font)
axes.set_xlabel(xlabel, fontsize=font_size)
axes.set_ylabel(ylabel, fontsize=font_size)
axes.tick_params(axis='x', labelsize=axis_font)
axes.tick_params(axis='y', labelsize=axis_font)
def update_axes_snr(axes, xlabel, ylabel):
"""Adjust the axes of the norms figure with labels/ticks"""
font_size = 30
axis_font = 25
legend_font = 16
# the legends
categories = [r'$W_1$', r'$W_2$', r'$W_3$', r'$W_4$', r'$W_5$', r'$W_6$']
# Grey line in the middle
axes.set_title('The SNR ($norm^2/variance$)')
# axes.axvline(x=370, color='grey', linestyle=':', linewidth=4)
axes.legend(categories, loc='best', fontsize=legend_font)
axes.set_xlabel(xlabel, fontsize=font_size)
axes.set_ylabel(ylabel, fontsize=font_size)
axes.tick_params(axis='x', labelsize=axis_font)
axes.tick_params(axis='y', labelsize=axis_font)
def adjust_axes(axes_log, axes_norms, p_0, p_1, f_log, f_norms, axes_snr=None, f_snr=None, p_3=None, axes_gaus=None,
f_gau=None, p_4=None, directory_name=''):
# adejust the figure according the specipic labels, scaling and legends
# Change the log and log to linear if you want linear scaling
# update_axes(reg_axes, '# Epochs', 'Normalized Mean and STD', [0, 10000], [0.000001, 10], '', 'log', 'log', [1, 10, 100, 1000, 10000], [0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10], p_0, p_1)
title = 'The Mean and std of the gradients of each layer'
update_axes(axes_log, f_log, '# Epochs', 'Mean and STD', [0, 7000], [0.001, 10], title, 'log', 'log',
[1, 10, 100, 1000, 7000], [0.001, 0.01, 0.1, 1, 10], p_0, p_1)
update_axes_norms(axes_norms, '# Epochs', '$L_2$')
if p_3:
title = r'SNR of the gradients ($\frac{norm^2}{variance}$)'
update_axes(axes_snr, f_snr, '# Epochs', 'SNR', [0, 7000], [0.0001, 10], title, 'log', 'log',
[1, 10, 100, 1000, 7000], [0.0001, 0.001, 0.01, 0.1, 1, 10], p_3=p_3)
if p_4:
title = r'Gaussian Channel bounds of the gradients ($\log\left(1+SNR\right)$)'
update_axes(axes_gaus, f_gau, '# Epochs', 'log(SNR+1)', [0, 7000], [0.0001, 10], title, 'log', 'log',
[1, 10, 100, 1000, 7000], [0.0001, 0.001, 0.01, 0.1, 1, 10], p_4=p_4)
# axes_log.plot(epochsInds[1:], np.abs(np.diff(np.squeeze(data_array['loss_train']))) / np.diff(epochsInds[:]), color='black', linewidth = 3)
# axes_log.plot(epochsInds[0:], np.sum(np.array(sum_y), axis=0), color='c', linewidth = 3)
# axes_log.plot(epochsInds[1:], diff_mean_loss, color='red', linewidth = 3)
# f_log1, (axes_log1) = plt.subplots(1, 1, figsize=fig_size)
# axes_log1.plot(epochsInds[1:], np.sum(np.array(sum_y), axis=0)[1:] / diff_mean_loss, color='c', linewidth=3)
# axes_log.set_xscale('log')
f_log.savefig(directory_name + 'log_gradient.svg', dpi=200, format='svg')
f_norms.savefig(directory_name + 'norms.jpg', dpi=200, format='jpg')
def adjustAxes(axes, axis_font=20, title_str='', x_ticks=[], y_ticks=[], x_lim=None, y_lim=None,
set_xlabel=True, set_ylabel=True, x_label='', y_label='', set_xlim=True, set_ylim=True, set_ticks=True,
label_size=20, set_yscale=False,
set_xscale=False, yscale=None, xscale=None, ytick_labels='', genreal_scaling=False):
"""Organize the axes of the given figure"""
if set_xscale:
axes.set_xscale(xscale)
if set_yscale:
axes.set_yscale(yscale)
if genreal_scaling:
axes.xaxis.set_major_formatter(matplotlib.ticker.ScalarFormatter())
axes.yaxis.set_major_formatter(matplotlib.ticker.ScalarFormatter())
axes.xaxis.major.formatter._useMathText = True
axes.set_yticklabels(ytick_labels)
axes.xaxis.set_major_formatter(matplotlib.ticker.ScalarFormatter(useMathText=True))
if set_xlim:
axes.set_xlim(x_lim)
if set_ylim:
axes.set_ylim(y_lim)
axes.set_title(title_str, fontsize=axis_font + 2)
axes.tick_params(axis='y', labelsize=axis_font)
axes.tick_params(axis='x', labelsize=axis_font)
if set_ticks:
axes.set_xticks(x_ticks)
axes.set_yticks(y_ticks)
if set_xlabel:
axes.set_xlabel(x_label, fontsize=label_size)
if set_ylabel:
axes.set_ylabel(y_label, fontsize=label_size)
def create_color_bar(f, cmap, colorbar_axis, bar_font, epochsInds, title):
sm = plt.cm.ScalarMappable(cmap=cmap, norm=plt.Normalize(vmin=0, vmax=1))
sm._A = []
cbar_ax = f.add_axes(colorbar_axis)
cbar = f.colorbar(sm, ticks=[], cax=cbar_ax)
cbar.ax.tick_params(labelsize=bar_font)
cbar.set_label(title, size=bar_font)
cbar.ax.text(0.5, -0.01, epochsInds[0], transform=cbar.ax.transAxes,
va='top', ha='center', size=bar_font)
cbar.ax.text(0.5, 1.0, str(epochsInds[-1]), transform=cbar.ax.transAxes,
va='bottom', ha='center', size=bar_font)
def get_data(name):
"""Load data from the given name"""
gen_data = {}
# new version
if os.path.isfile(name + 'data.pickle'):
curent_f = open(name + 'data.pickle', 'rb')
d2 = cPickle.load(curent_f)
# Old version
else:
curent_f = open(name, 'rb')
d1 = cPickle.load(curent_f)
data1 = d1[0]
data = np.array([data1[:, :, :, :, :, 0], data1[:, :, :, :, :, 1]])
# Convert log e to log2
normalization_factor = 1 / np.log2(2.718281)
epochsInds = np.arange(0, data.shape[4])
d2 = {}
d2['epochsInds'] = epochsInds
d2['information'] = data / normalization_factor
return d2
def load_reverese_annealing_data(name, max_beta=300, min_beta=0.8, dt=0.1):
"""Load mat file of the reverse annealing data with the give params"""
with open(name + '.mat', 'rb') as handle:
d = sio.loadmat(name + '.mat')
F = d['F']
ys = d['y']
PXs = np.ones(len(F)) / len(F)
f_PYs = np.mean(ys)
PYs = np.array([f_PYs, 1 - f_PYs])
PYX = np.concatenate((np.array(ys)[None, :], 1 - np.array(ys)[None, :]))
mybetaS = 2 ** np.arange(np.log2(min_beta), np.log2(max_beta), dt)
mybetaS = mybetaS[::-1]
PTX0 = np.eye(PXs.shape[0])
return mybetaS, np.squeeze(PTX0), np.squeeze(PXs), np.squeeze(PYX), np.squeeze(PYs)
def get_data(name):
"""Load data from the given name"""
gen_data = {}
# new version
if os.path.isfile(name + 'data.pickle'):
curent_f = open(name + 'data.pickle', 'rb')
d2 = cPickle.load(curent_f)
# Old version
else:
curent_f = open(name, 'rb')
d1 = cPickle.load(curent_f)
data1 = d1[0]
data = np.array([data1[:, :, :, :, :, 0], data1[:, :, :, :, :, 1]])
# Convert log e to log2
normalization_factor = 1 / np.log2(2.718281)
epochsInds = np.arange(0, data.shape[4])
d2 = {}
d2['epochsInds'] = epochsInds
d2['information'] = data / normalization_factor
return d2
|