Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -94,14 +94,14 @@ def load_model():
|
|
94 |
|
95 |
return model, processor, device
|
96 |
|
97 |
-
def show_mask(mask, ax, random_color=False):
|
98 |
if random_color:
|
99 |
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
|
100 |
else:
|
101 |
color = np.array([30/255, 144/255, 255/255, 0.6])
|
102 |
h, w = mask.shape[-2:]
|
103 |
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
|
104 |
-
ax.imshow(mask_image)
|
105 |
|
106 |
### SERVER ###
|
107 |
def server(input: Inputs, output: Outputs, session: Session):
|
@@ -238,22 +238,25 @@ def server(input: Inputs, output: Outputs, session: Session):
|
|
238 |
|
239 |
# Extract the image data
|
240 |
#image_data = image.cpu().detach().numpy()
|
|
|
|
|
|
|
241 |
|
242 |
# Plot the first image on the left
|
243 |
axes[0].imshow(image)
|
244 |
axes[0].set_title("Image")
|
245 |
|
246 |
# Plot the probability map on the right
|
247 |
-
axes[1].imshow(prob)
|
248 |
axes[1].set_title("Probability Map")
|
249 |
|
250 |
# Plot the prediction image on the right
|
251 |
-
axes[2].imshow(prediction)
|
252 |
axes[2].set_title("Prediction")
|
253 |
|
254 |
# Plot the predicted mask on the right
|
255 |
axes[3].imshow(image)
|
256 |
-
show_mask(prediction, axes[3])
|
257 |
axes[3].set_title("Predicted Mask")
|
258 |
|
259 |
# Hide axis ticks and labels
|
|
|
94 |
|
95 |
return model, processor, device
|
96 |
|
97 |
+
def show_mask(mask, ax, width, height, random_color=False):
|
98 |
if random_color:
|
99 |
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
|
100 |
else:
|
101 |
color = np.array([30/255, 144/255, 255/255, 0.6])
|
102 |
h, w = mask.shape[-2:]
|
103 |
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
|
104 |
+
ax.imshow(mask_image, extent=(0, width, height, 0)) # Setting extent to match original image dimensions
|
105 |
|
106 |
### SERVER ###
|
107 |
def server(input: Inputs, output: Outputs, session: Session):
|
|
|
238 |
|
239 |
# Extract the image data
|
240 |
#image_data = image.cpu().detach().numpy()
|
241 |
+
|
242 |
+
# Get the dimensions of the original image
|
243 |
+
height, width = image.shape[:2]
|
244 |
|
245 |
# Plot the first image on the left
|
246 |
axes[0].imshow(image)
|
247 |
axes[0].set_title("Image")
|
248 |
|
249 |
# Plot the probability map on the right
|
250 |
+
axes[1].imshow(prob, extent=(0, width, height, 0)) # Setting extent to match original image dimensions
|
251 |
axes[1].set_title("Probability Map")
|
252 |
|
253 |
# Plot the prediction image on the right
|
254 |
+
axes[2].imshow(prediction, extent=(0, width, height, 0)) # Setting extent to match original image dimensions
|
255 |
axes[2].set_title("Prediction")
|
256 |
|
257 |
# Plot the predicted mask on the right
|
258 |
axes[3].imshow(image)
|
259 |
+
show_mask(prediction, axes[3], width, height)
|
260 |
axes[3].set_title("Predicted Mask")
|
261 |
|
262 |
# Hide axis ticks and labels
|