Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -9,10 +9,12 @@ import shinyswatch
|
|
9 |
from shiny import App, Inputs, Outputs, Session, reactive, render, req, ui
|
10 |
|
11 |
import os
|
12 |
-
# os.environ["TRANSFORMERS_CACHE"] = "./hf_cache"
|
13 |
from transformers import SamModel, SamConfig, SamProcessor
|
14 |
import torch
|
15 |
|
|
|
|
|
|
|
16 |
sns.set_theme()
|
17 |
|
18 |
dir = Path(__file__).resolve().parent
|
@@ -59,22 +61,16 @@ app_ui = ui.page_fillable(
|
|
59 |
),
|
60 |
)
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
def server(input: Inputs, output: Outputs, session: Session):
|
64 |
-
# Load the model configuration
|
65 |
-
model_config = SamConfig.from_pretrained("facebook/sam-vit-base")
|
66 |
-
processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
|
67 |
-
|
68 |
-
# Create an instance of the model architecture with the loaded configuration
|
69 |
-
model = SamModel(config=model_config)
|
70 |
-
# Update the model by loading the weights from saved file
|
71 |
-
model_state_dict = torch.load(str(dir / "checkpoint.pth"), map_location=torch.device('cpu'))
|
72 |
-
model.load_state_dict(model_state_dict)
|
73 |
-
|
74 |
-
# set the device to cuda if available, otherwise use cpu
|
75 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
76 |
-
model.to(device)
|
77 |
-
|
78 |
@reactive.Calc
|
79 |
def uploaded_image_path() -> str:
|
80 |
"""Returns the path to the uploaded image"""
|
@@ -92,6 +88,58 @@ def server(input: Inputs, output: Outputs, session: Session):
|
|
92 |
return img
|
93 |
else:
|
94 |
return None # Return an empty string if no image is uploaded
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
@reactive.Calc
|
97 |
def filtered_df() -> pd.DataFrame:
|
|
|
9 |
from shiny import App, Inputs, Outputs, Session, reactive, render, req, ui
|
10 |
|
11 |
import os
|
|
|
12 |
from transformers import SamModel, SamConfig, SamProcessor
|
13 |
import torch
|
14 |
|
15 |
+
from PIL import Image
|
16 |
+
import io
|
17 |
+
|
18 |
sns.set_theme()
|
19 |
|
20 |
dir = Path(__file__).resolve().parent
|
|
|
61 |
),
|
62 |
)
|
63 |
|
64 |
+
def tif_bytes_to_pil_image(tif_bytes):
|
65 |
+
# Create a BytesIO object from the TIFF bytes
|
66 |
+
bytes_io = io.BytesIO(tif_bytes)
|
67 |
+
|
68 |
+
# Open the BytesIO object as an Image
|
69 |
+
image = Image.open(bytes_io)
|
70 |
+
|
71 |
+
return image
|
72 |
|
73 |
def server(input: Inputs, output: Outputs, session: Session):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
@reactive.Calc
|
75 |
def uploaded_image_path() -> str:
|
76 |
"""Returns the path to the uploaded image"""
|
|
|
88 |
return img
|
89 |
else:
|
90 |
return None # Return an empty string if no image is uploaded
|
91 |
+
|
92 |
+
def process_image():
|
93 |
+
"""Processes the uploaded image, loads the model, and evaluates to get predictions"""
|
94 |
+
# Load the uploaded image
|
95 |
+
uploaded_image_bytes = input.tile_image()[0].read()
|
96 |
+
|
97 |
+
# Convert the uploaded TIFF bytes to a PIL Image object
|
98 |
+
uploaded_image = tif_bytes_to_pil_image(uploaded_image_bytes)
|
99 |
+
|
100 |
+
# Perform any preprocessing steps on the image as needed
|
101 |
+
|
102 |
+
# Example: Convert the image to the required input format for the model
|
103 |
+
# image_array = preprocess_image(uploaded_image)
|
104 |
+
|
105 |
+
# Load the model configuration
|
106 |
+
model_config = SamConfig.from_pretrained("facebook/sam-vit-base")
|
107 |
+
processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
|
108 |
+
|
109 |
+
# Create an instance of the model architecture with the loaded configuration
|
110 |
+
model = SamModel(config=model_config)
|
111 |
+
# Update the model by loading the weights from saved file
|
112 |
+
model_state_dict = torch.load(str(dir / "checkpoint.pth"), map_location=torch.device('cpu'))
|
113 |
+
model.load_state_dict(model_state_dict)
|
114 |
+
|
115 |
+
# set the device to cuda if available, otherwise use cpu
|
116 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
117 |
+
model.to(device)
|
118 |
+
|
119 |
+
# Evaluate the image with the model
|
120 |
+
# Example: predictions = model.predict(image_array)
|
121 |
+
|
122 |
+
# Return the processed result (replace 'result' with the actual processed result)
|
123 |
+
return "Processed result"
|
124 |
+
|
125 |
+
@reactive.Calc
|
126 |
+
def processed_result():
|
127 |
+
"""Processes the image when uploaded"""
|
128 |
+
if input.tile_image() is not None:
|
129 |
+
return process_image()
|
130 |
+
else:
|
131 |
+
return None
|
132 |
+
|
133 |
+
@output
|
134 |
+
@render.text
|
135 |
+
def processed_output():
|
136 |
+
"""Displays the predictions of the uploaded image"""
|
137 |
+
return processed_result()
|
138 |
+
|
139 |
+
|
140 |
+
|
141 |
+
|
142 |
+
|
143 |
|
144 |
@reactive.Calc
|
145 |
def filtered_df() -> pd.DataFrame:
|