from pathlib import Path from typing import List, Dict, Tuple import matplotlib.colors as mpl_colors import pandas as pd import seaborn as sns import shinyswatch from shiny import App, Inputs, Outputs, Session, reactive, render, req, ui from transformers import SamModel, SamConfig, SamProcessor import torch sns.set_theme() www_dir = Path(__file__).parent.resolve() / "www" df = pd.read_csv(Path(__file__).parent / "penguins.csv", na_values="NA") numeric_cols: List[str] = df.select_dtypes(include=["float64"]).columns.tolist() species: List[str] = df["Species"].unique().tolist() species.sort() app_ui = ui.page_fillable( shinyswatch.theme.minty(), ui.layout_sidebar( ui.sidebar( ui.input_file("tile_image", "Choose TIFF File", accept=[".tif"], multiple=False), # Artwork by @allison_horst ui.input_selectize( "xvar", "X variable", numeric_cols, selected="Bill Length (mm)", ), ui.input_selectize( "yvar", "Y variable", numeric_cols, selected="Bill Depth (mm)", ), ui.input_checkbox_group( "species", "Filter by species", species, selected=species ), ui.hr(), ui.input_switch("by_species", "Show species", value=True), ui.input_switch("show_margins", "Show marginal plots", value=True), ), ui.output_image("uploaded_image"), # display the uploaded TIFF sidewalk tile image ui.output_ui("value_boxes"), ui.output_plot("scatter", fill=True), ui.help_text( "Artwork by ", ui.a("@allison_horst", href="https://twitter.com/allison_horst"), class_="text-end", ), ), ) def server(input: Inputs, output: Outputs, session: Session): # Load the model configuration model_config = SamConfig.from_pretrained("facebook/sam-vit-base") processor = SamProcessor.from_pretrained("facebook/sam-vit-base") # Create an instance of the model from my fine-tuned model with the loaded configuration model = SamModel.from_pretrained("aagoluoglu/SAM_Sidewalks", config=model_config) # set the device to cuda if available, otherwise use cpu device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) @reactive.Calc def uploaded_image_path() -> str: """Returns the path to the uploaded image""" if input.tile_image() is not None: return input.tile_image()[0]['datapath'] # Assuming multiple=False else: return "" # No image uploaded @render.image def uploaded_image(): """Displays the uploaded image""" from pathlib import Path img_src = uploaded_image_path() if img_src: dir = Path(__file__).resolve().parent img: ImgData = {"src": str(dir / uploaded_image_path()), "width": "100px"} return img else: return None # Return an empty string if no image is uploaded @reactive.Calc def filtered_df() -> pd.DataFrame: """Returns a Pandas data frame that includes only the desired rows""" # This calculation "req"uires that at least one species is selected req(len(input.species()) > 0) # Filter the rows so we only include the desired species return df[df["Species"].isin(input.species())] @output @render.plot def scatter(): """Generates a plot for Shiny to display to the user""" # The plotting function to use depends on whether margins are desired plotfunc = sns.jointplot if input.show_margins() else sns.scatterplot plotfunc( data=filtered_df(), x=input.xvar(), y=input.yvar(), palette=palette, hue="Species" if input.by_species() else None, hue_order=species, legend=False, ) @output @render.ui def value_boxes(): df = filtered_df() def penguin_value_box(title: str, count: int, bgcol: str, showcase_img: str): return ui.value_box( title, count, {"class_": "pt-1 pb-0"}, showcase=ui.fill.as_fill_item( ui.tags.img( {"style": "object-fit:contain;"}, src=showcase_img, ) ), theme_color=None, style=f"background-color: {bgcol};", ) if not input.by_species(): return penguin_value_box( "Penguins", len(df.index), bg_palette["default"], # Artwork by @allison_horst showcase_img="penguins.png", ) value_boxes = [ penguin_value_box( name, len(df[df["Species"] == name]), bg_palette[name], # Artwork by @allison_horst showcase_img=f"{name}.png", ) for name in species # Only include boxes for _selected_ species if name in input.species() ] return ui.layout_column_wrap(*value_boxes, width = 1 / len(value_boxes)) # "darkorange", "purple", "cyan4" colors = [[255, 140, 0], [160, 32, 240], [0, 139, 139]] colors = [(r / 255.0, g / 255.0, b / 255.0) for r, g, b in colors] palette: Dict[str, Tuple[float, float, float]] = { "Adelie": colors[0], "Chinstrap": colors[1], "Gentoo": colors[2], "default": sns.color_palette()[0], # type: ignore } bg_palette = {} # Use `sns.set_style("whitegrid")` to help find approx alpha value for name, col in palette.items(): # Adjusted n_colors until `axe` accessibility did not complain about color contrast bg_palette[name] = mpl_colors.to_hex(sns.light_palette(col, n_colors=7)[1]) # type: ignore app = App( app_ui, server, static_assets=str(www_dir), )