mishig HF Staff commited on
Commit
660d564
·
1 Parent(s): eb29b70

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -80
README.md CHANGED
@@ -7,83 +7,9 @@ sdk: static
7
  pinned: false
8
  ---
9
 
10
- <p class="lg:col-span-3">
11
- Hugging Face is working with Amazon Web Services to make it easier than
12
- ever for startups and enterprises to <strong
13
- >train and deploy Hugging Face models in Amazon SageMaker</strong
14
- >.
15
- </p>
16
- <a
17
- href="https://huggingface.co/blog/the-partnership-amazon-sagemaker-and-hugging-face"
18
- class="block overflow-hidden group"
19
- >
20
- <div
21
- class="w-full h-40 object-cover mb-2 bg-indigo-100 rounded-lg flex items-center justify-center dark:bg-gray-900 dark:group-hover:bg-gray-850"
22
- >
23
- <img
24
- alt=""
25
- src="/front/assets/promo/amazon_sagemaker_x_huggingface.png"
26
- class="w-40"
27
- />
28
- </div>
29
- <div class="underline">Read announcement blog post</div>
30
- </a>
31
- <a href="https://youtu.be/ok3hetb42gU" class="block overflow-hidden">
32
- <img
33
- alt=""
34
- src="/front/assets/promo/amazon_walkthrough_thumbnail.png"
35
- class="w-full h-40 object-cover mb-2 bg-gray-300 rounded-lg"
36
- />
37
- <div class="underline">Video Walkthrough with Philipp Schmid</div>
38
- </a>
39
- <a
40
- href="https://huggingface.co/docs/sagemaker"
41
- class="block overflow-hidden group"
42
- >
43
- <div
44
- class="w-full h-40 object-cover mb-2 bg-gray-900 group-hover:bg-gray-850 rounded-lg flex items-start justify-start"
45
- >
46
- <img
47
- alt=""
48
- src="/front/assets/promo/amazon_documentation.png"
49
- class="w-44 p-4"
50
- />
51
- </div>
52
- <div class="underline">Documentation: Hugging Face in SageMaker</div>
53
- </a>
54
- <div class="lg:col-span-3">
55
- <p class="mb-2">
56
- To train Hugging Face models in Amazon SageMaker, you can use the
57
- Hugging Face Deep Learning Contrainers (DLCs) and the Hugging Face
58
- support in the SageMaker Python SDK.
59
- </p>
60
- <p class="mb-2">
61
- The DLCs are fully integrated with the SageMaker distributed training
62
- libraries to train models more quickly using the latest generation of
63
- accelerated computing instances available on Amazon EC2. With the
64
- SageMaker Python SDK, you can start training with just a single line of
65
- code, enabling your teams to move from idea to production more quickly.
66
- </p>
67
- <p class="mb-2">
68
- To deploy Hugging Face models in Amazon SageMaker, you can use the
69
- Hugging Face Deep Learning Containers with the new Hugging Face
70
- Inference Toolkit.
71
- </p>
72
- <p class="mb-2">
73
- With the new Hugging Face Inference DLCs, deploy your trained models for
74
- inference with just one more line of code, or select any of the 10,000+
75
- models publicly available on the 🤗 Hub, and deploy them with Amazon
76
- SageMaker, to easily create production-ready endpoints that scale
77
- seamlessly, with built-in monitoring and enterprise-level security.
78
- </p>
79
- <p>
80
- More information: <a
81
- href="https://aws.amazon.com/blogs/machine-learning/aws-and-hugging-face-collaborate-to-simplify-and-accelerate-adoption-of-natural-language-processing-models/"
82
- class="underline">AWS blog post</a
83
- >,
84
- <a
85
- href="https://discuss.huggingface.co/c/sagemaker/17"
86
- class="underline">Community Forum</a
87
- >
88
- </p>
89
- </div>
 
7
  pinned: false
8
  ---
9
 
10
+ <iframe id="inlineFrameExample"
11
+ title="Inline Frame Example"
12
+ width="300"
13
+ height="200"
14
+ src="https://www.openstreetmap.org/export/embed.html?bbox=-0.004017949104309083%2C51.47612752641776%2C0.00030577182769775396%2C51.478569861898606&layer=mapnik">
15
+ </iframe>