File size: 15,921 Bytes
97ed94f
644db4b
97ed94f
 
 
 
 
 
 
 
 
 
 
 
7dbaf21
97ed94f
7dbaf21
 
 
 
644db4b
7dbaf21
97ed94f
 
 
 
 
7dbaf21
b864380
97ed94f
87a479d
7dbaf21
 
 
 
 
 
 
644db4b
7dbaf21
97ed94f
7dbaf21
b864380
87a479d
b864380
97ed94f
 
644db4b
97ed94f
 
7dbaf21
644db4b
97ed94f
 
 
85562af
b864380
7dbaf21
 
 
97ed94f
 
7dbaf21
 
 
97ed94f
 
 
644db4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b864380
644db4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b864380
 
 
 
7dbaf21
 
97ed94f
 
 
 
 
 
b864380
 
 
97ed94f
7dbaf21
 
97ed94f
 
 
 
 
 
b864380
 
 
 
 
 
 
7dbaf21
b864380
 
7dbaf21
b864380
 
87a479d
97ed94f
 
 
 
 
 
87a479d
97ed94f
 
 
 
 
 
 
 
85562af
b864380
97ed94f
b864380
8cf97f9
7dbaf21
 
 
 
97ed94f
 
 
 
 
 
 
 
87a479d
b864380
7dbaf21
 
 
b864380
7dbaf21
 
87a479d
b864380
7dbaf21
97ed94f
 
 
 
 
 
 
 
b864380
 
 
644db4b
7dbaf21
 
056a3fd
 
 
 
7dbaf21
 
 
 
b864380
 
 
 
97ed94f
 
c4cb2d4
97ed94f
 
 
 
 
 
7dbaf21
b864380
7dbaf21
 
 
 
 
e42b13d
 
7dbaf21
 
b864380
97ed94f
7dbaf21
97ed94f
 
 
7dbaf21
 
97ed94f
7dbaf21
87a479d
7dbaf21
87a479d
7dbaf21
97ed94f
 
 
7dbaf21
 
97ed94f
 
 
7dbaf21
b864380
 
97ed94f
 
 
 
 
 
 
 
 
 
644db4b
 
7dbaf21
 
 
8b391b7
644db4b
 
7dbaf21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
644db4b
 
7dbaf21
 
 
 
 
644db4b
7dbaf21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b864380
999040d
7dbaf21
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
"""
This module integrates real-time object detection into live YouTube streams using the YOLO model and provides an interactive user interface through Gradio. It allows users to search for live YouTube streams and apply object detection to these streams in real time.

Main Features:
- Search for live YouTube streams using specific queries.
- Retrieve live stream URLs using the Streamlink library.
- Perform real-time object detection on live streams using the YOLO model.
- Display the live stream and object detection results through a Gradio interface.

The module comprises several key components:
- `SearchService`: A service class to search for YouTube videos and retrieve live stream URLs.
- `LiveYouTubeObjectDetector`: The main class integrating the YOLO model and Gradio UI, handling the entire workflow of searching, streaming, and object detection.

Dependencies:
- OpenCV (`cv2`): Used for image processing tasks.
- Gradio: Provides the interactive web-based user interface.
- Streamlink: Used for retrieving live stream data.
- NumPy: Utilized for numerical operations on image data.
- Pillow (`PIL`): A Python Imaging Library for opening, manipulating, and saving images.
- Ultralytics YOLO: The YOLO model implementation for object detection.
- `innertube`: Used for interacting with YouTube's internal API.
- `imageio`: For reading frames from live streams using FFmpeg.

Usage:
Run this file to launch the Gradio interface, which allows users to input search queries for YouTube live streams, select a stream, and perform object detection on the selected live stream.

"""

import logging
from typing import Any, Dict, List, Optional, Tuple

import asyncio
import cv2
import gradio as gr
import numpy as np
from ultralytics import YOLO
import streamlink
from PIL import Image
import innertube
import imageio.v3 as iio

logging.basicConfig(level=logging.DEBUG)


class SearchService:
    """
    SearchService provides functionality to search for YouTube videos using the
    `innertube` library and retrieve live stream URLs using the Streamlink library.

    Methods:
        search: Searches YouTube for videos matching a query and live filter.
        parse: Parses raw search response data into a list of video details.
        get_youtube_url: Constructs a YouTube URL for a given video ID.
        get_stream: Retrieves the stream URL for a given YouTube video URL.
    """

    @staticmethod
    def search(query: str, live: bool = False) -> List[Dict[str, Any]]:
        """
        Searches YouTube for videos matching the given query and live filter.

        :param query: The search query.
        :type query: str
        :param live: Whether to filter for live videos.
        :type live: bool
        :return: A list of search results, each a dictionary with video details.
        :rtype: List[Dict[str, Any]]
        """
        client = innertube.InnerTube()
        params = "EgJAAQ%3D%3D" if live else None  # 'Live' filter code
        
        response = client.search(query=query, params=params)
        results = SearchService.parse(response)
        return results

    @staticmethod
    def parse(response: Dict[str, Any]) -> List[Dict[str, Any]]:
        """
        Parses the raw search response data into a list of video details.

        :param response: The raw search response data from YouTube.
        :type response: Dict[str, Any]
        :return: A list of parsed video details.
        :rtype: List[Dict[str, Any]]
        """
        results = []
        try:
            contents = response["contents"]["twoColumnSearchResultsRenderer"]["primaryContents"]["sectionListRenderer"]["contents"]
            for content in contents:
                items = content.get("itemSectionRenderer", {}).get("contents", [])
                for item in items:
                    video_renderer = item.get("videoRenderer")
                    if video_renderer:
                        video_id = video_renderer.get("videoId")
                        thumbnails = video_renderer.get("thumbnail", {}).get("thumbnails", [])
                        title_runs = video_renderer.get("title", {}).get("runs", [])
                        title = "".join([run.get("text", "") for run in title_runs])
                        thumbnail_url = thumbnails[-1].get("url") if thumbnails else ""
                        results.append({
                            'video_id': video_id,
                            'thumbnail_url': thumbnail_url,
                            'title': title,
                        })
        except Exception as e:
            logging.error(f"Error parsing search results: {e}")
        return results

    @staticmethod
    def get_youtube_url(video_id: str) -> str:
        """
        Constructs a YouTube URL for the given video ID.

        :param video_id: The ID of the YouTube video.
        :type video_id: str
        :return: The YouTube URL for the video.
        :rtype: str
        """
        return f"https://www.youtube.com/watch?v={video_id}"

    @staticmethod
    def get_stream(youtube_url: str) -> Optional[str]:
        """
        Retrieves the stream URL for a given YouTube video URL.

        :param youtube_url: The URL of the YouTube video.
        :type youtube_url: str
        :return: The stream URL if available, otherwise None.
        :rtype: Optional[str]
        """
        try:
            session = streamlink.Streamlink()
            streams = session.streams(youtube_url)
            if streams:
                best_stream = streams.get("best")
                return best_stream.url if best_stream else None
            else:
                logging.warning(f"No streams found for: {youtube_url}")
                return None
        except Exception as e:
            logging.warning(f"An error occurred while getting stream: {e}")
            return None


class LiveYouTubeObjectDetector:
    """
    LiveYouTubeObjectDetector is a class that integrates object detection into live YouTube streams.
    It uses the YOLO (You Only Look Once) model to detect objects in video frames captured from live streams.
    The class also provides a Gradio interface for users to interact with the object detection system,
    allowing them to search for live streams, view them, and detect objects in real-time.

    Methods:
        detect_objects: Detects objects in a live YouTube stream given its URL.
        get_frame: Captures a frame from a live stream URL.
        annotate: Annotates a frame with detected objects.
        create_black_image: Creates a black placeholder image.
        get_live_streams: Searches for live streams based on a query.
        render: Sets up and launches the Gradio interface.
    """

    def __init__(self):
        """Initializes the LiveYouTubeObjectDetector with YOLO model and UI components."""
        logging.getLogger().setLevel(logging.DEBUG)
        self.model = YOLO("yolo11n.pt")
        self.model.fuse()
        self.streams = self.get_live_streams("world live cams")

    async def detect_objects(self, url: str) -> Tuple[Image.Image, List[Tuple[Tuple[int, int, int, int], str]]]:
        """
        Detects objects in the given live YouTube stream URL.

        :param url: The URL of the live YouTube video.
        :type url: str
        :return: A tuple containing the annotated image and a list of annotations.
        :rtype: Tuple[Image.Image, List[Tuple[Tuple[int, int, int, int], str]]]
        """
        stream_url = SearchService.get_stream(url)
        if not stream_url:
            logging.error(f"Unable to find a stream for: {url}")
            return self.create_black_image()
        frame = await self.get_frame(stream_url)
        if frame is None:
            logging.error(f"Unable to capture frame for: {url}")
            return self.create_black_image()
        return self.annotate(frame)

    async def get_frame(self, stream_url: str) -> Optional[np.ndarray]:
        """
        Captures a frame from the given live stream URL.

        :param stream_url: The URL of the live stream.
        :type stream_url: str
        :return: The captured frame as a numpy array, or None if capture fails.
        :rtype: Optional[np.ndarray]
        """
        if not stream_url:
            return None
        try:
            reader = iio.imiter(stream_url, plugin='pyav', thread_type='AUTO')
            loop = asyncio.get_event_loop()
            frame = await loop.run_in_executor(None, next, reader, None)
            if frame is None:
                return None
            # Resize frame if needed
            frame = cv2.resize(frame, (1280, 720))
            return frame
        except StopIteration:
            logging.warning("Could not read frame from stream.")
            return None
        except Exception as e:
            logging.warning(f"An error occurred while capturing the frame: {e}")
            return None

    def annotate(self, frame: np.ndarray) -> Tuple[Image.Image, List[Tuple[Tuple[int, int, int, int], str]]]:
        """
        Annotates the given frame with detected objects and their bounding boxes.

        :param frame: The frame to be annotated.
        :type frame: np.ndarray
        :return: A tuple of the annotated PIL image and list of annotations.
        :rtype: Tuple[Image.Image, List[Tuple[Tuple[int, int, int, int], str]]]
        """
        results = self.model(frame)[0]
        annotations = []
        boxes = results.boxes
        for box in boxes:
            x1, y1, x2, y2 = box.xyxy[0].tolist()
            class_id = int(box.cls[0])
            class_name = self.model.names[class_id]
            bbox_coords = (int(x1), int(y1), int(x2), int(y2))
            annotations.append((bbox_coords, class_name))
        pil_image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
        return pil_image, annotations

    @staticmethod
    def create_black_image() -> Tuple[Image.Image, List]:
        """
        Creates a black image of fixed dimensions.

        :return: A black image as a PIL Image and an empty list of annotations.
        :rtype: Tuple[Image.Image, List]
        """
        black_image = np.zeros((720, 1280, 3), dtype=np.uint8)
        pil_black_image = Image.fromarray(black_image)
        return pil_black_image, []

    def get_live_streams(self, query: str = "") -> List[Dict[str, Any]]:
        """
        Searches for live streams on YouTube based on the given query.

        :param query: The search query for live streams.
        :type query: str
        :return: A list of dictionaries containing information about each live stream.
        :rtype: List[Dict[str, str]]
        """
        return SearchService.search(query if query else "world live cams", live=True)

    def render(self):
        """
        Sets up and launches the Gradio interface for the application.

        This method creates the Gradio UI elements and defines the behavior of the application.
        It includes the setup of interactive widgets like galleries, textboxes, and buttons,
        and defines the actions triggered by user interactions with these widgets.

        The Gradio interface allows users to search for live YouTube streams, select a stream,
        and run object detection on the selected live stream.
        """
        with gr.Blocks(title="Object Detection in Live YouTube Streams",
                       css=".gradio-container {background-color: #f5f5f5}", theme=gr.themes.Soft()) as app:
            gr.HTML("<h1 style='text-align: center; color: #1E88E5;'>Object Detection in Live YouTube Streams</h1>")
            with gr.Tabs():
                with gr.TabItem("Live Stream Detection"):
                    with gr.Row():
                        stream_input = gr.Textbox(label="URL of Live YouTube Video",
                                                  placeholder="Enter YouTube live stream URL...", interactive=True)
                        submit_button = gr.Button("Detect Objects", variant="primary")
                    annotated_image = gr.AnnotatedImage(label="Detection Result", height=480)
                    status_text = gr.Markdown(value="Status: Ready", visible=False)

                    async def detect_objects_from_url(url):
                        status_text.update(value="Status: Processing...", visible=True)
                        try:
                            result = await self.detect_objects(url)
                            status_text.update(value="Status: Done", visible=True)
                            return result
                        except Exception as e:
                            logging.error(f"An error occurred: {e}")
                            status_text.update(value=f"Status: Error - {e}", visible=True)
                            return self.create_black_image()

                    submit_button.click(fn=detect_objects_from_url, inputs=[stream_input], outputs=[annotated_image], api_name="detect_objects")

                with gr.TabItem("Search Live Streams"):
                    with gr.Row():
                        search_input = gr.Textbox(label="Search for Live YouTube Streams",
                                                  placeholder="Enter search query...", interactive=True)
                        search_button = gr.Button("Search", variant="secondary")
                    gallery = gr.Gallery(label="Live YouTube Streams", show_label=False).style(grid=[4], height="auto")
                    gallery.style(item_height=150)
                    status_text_search = gr.Markdown(value="", visible=False)

                    async def search_live_streams(query):
                        status_text_search.update(value="Searching...", visible=True)
                        self.streams = self.get_live_streams(query)
                        gallery_items = []
                        for stream in self.streams:
                            thumb_url = stream["thumbnail_url"]
                            title = stream["title"]
                            video_id = stream["video_id"]
                            gallery_items.append((thumb_url, title, video_id))
                        status_text_search.update(value="Search Results:", visible=True)
                        return gr.update(value=gallery_items)

                    search_button.click(fn=search_live_streams, inputs=[search_input], outputs=[gallery], api_name="search_streams")

                    async def detect_objects_from_gallery_item(evt: gr.SelectData):
                        index = evt.index
                        if index is not None and index < len(self.streams):
                            selected_stream = self.streams[index]
                            stream_url = SearchService.get_youtube_url(selected_stream["video_id"])
                            stream_input.value = stream_url
                            result = await self.detect_objects(stream_url)
                            annotated_image.update(value=result[0], annotations=result[1])
                            with gr.Row():
                                annotated_image.render()
                            return result

                    gallery.select(fn=detect_objects_from_gallery_item, inputs=None, outputs=None)

            gr.Markdown(
                """
                **Instructions:**
                - **Live Stream Detection Tab:** Enter a YouTube live stream URL and click 'Detect Objects' to view the real-time object detection.
                - **Search Live Streams Tab:** Search for live streams on YouTube, select one from the gallery, and view object detection results.
                """
            )

            gr.HTML("<footer style='text-align: center; color: gray;'>Developed using Gradio and YOLO</footer>")

        app.queue(concurrency_count=3).launch()

if __name__ == "__main__":
    LiveYouTubeObjectDetector().render()