File size: 14,325 Bytes
97ed94f 7dbaf21 97ed94f 7dbaf21 97ed94f 7dbaf21 97ed94f 7dbaf21 b864380 97ed94f 87a479d 7dbaf21 97ed94f 7dbaf21 b864380 87a479d b864380 97ed94f 7dbaf21 97ed94f 7dbaf21 97ed94f 85562af b864380 7dbaf21 97ed94f 7dbaf21 97ed94f b864380 7dbaf21 b864380 7dbaf21 97ed94f b864380 97ed94f 7dbaf21 97ed94f b864380 7dbaf21 b864380 7dbaf21 b864380 87a479d 97ed94f 87a479d 97ed94f 85562af b864380 97ed94f b864380 92b9418 7dbaf21 97ed94f 87a479d b864380 7dbaf21 b864380 7dbaf21 87a479d b864380 7dbaf21 97ed94f b864380 7dbaf21 b864380 97ed94f c4cb2d4 97ed94f 7dbaf21 b864380 7dbaf21 e42b13d 7dbaf21 b864380 97ed94f 7dbaf21 97ed94f 7dbaf21 97ed94f 7dbaf21 87a479d 7dbaf21 87a479d 7dbaf21 97ed94f 7dbaf21 97ed94f 7dbaf21 b864380 97ed94f 7dbaf21 8b391b7 7dbaf21 b864380 999040d 7dbaf21 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
"""
This module integrates real-time object detection into live YouTube streams using the YOLO (You Only Look Once) model and provides an interactive user interface through Gradio. It allows users to search for live YouTube streams and apply object detection to these streams in real time.
Main Features:
- Search for live YouTube streams using specific queries.
- Retrieve live stream URLs using the Streamlink library.
- Perform real-time object detection on live streams using the YOLO model.
- Display the live stream and object detection results through a Gradio interface.
The module comprises several key components:
- `SearchService`: A service class to search for YouTube videos and retrieve live stream URLs.
- `LiveYouTubeObjectDetector`: The main class integrating the YOLO model and Gradio UI, handling the entire workflow of searching, streaming, and object detection.
Dependencies:
- OpenCV (`cv2`): Used for image processing tasks.
- Gradio: Provides the interactive web-based user interface.
- Streamlink: Used for retrieving live stream data.
- NumPy: Utilized for numerical operations on image data.
- Pillow (`PIL`): A Python Imaging Library for opening, manipulating, and saving images.
- Ultralytics YOLO: The YOLO model implementation for object detection.
- `youtube-search-python`: Used for searching YouTube without API keys.
- `imageio`: For reading frames from live streams using FFmpeg.
Usage:
Run this file to launch the Gradio interface, which allows users to input search queries for YouTube live streams, select a stream, and perform object detection on the selected live stream.
"""
import logging
from typing import Any, Dict, List, Optional, Tuple
import asyncio
import cv2
import gradio as gr
import numpy as np
from ultralytics import YOLO
import streamlink
from PIL import Image
from youtubesearchpython import VideosSearch
import imageio.v3 as iio
logging.basicConfig(level=logging.DEBUG)
class SearchService:
"""
SearchService provides functionality to search for YouTube videos using the
`youtube-search-python` library and retrieve live stream URLs using the Streamlink library.
Methods:
search: Searches YouTube for videos matching a query and live filter.
get_youtube_url: Constructs a YouTube URL for a given video ID.
get_stream: Retrieves the stream URL for a given YouTube video URL.
"""
@staticmethod
def search(query: str, live: bool = False) -> List[Dict[str, Any]]:
"""
Searches YouTube for videos matching the given query and live filter.
:param query: The search query.
:type query: str
:param live: Whether to filter for live videos.
:type live: bool
:return: A list of search results, each a dictionary with video details.
:rtype: List[Dict[str, Any]]
"""
results = []
# Apply live filter if needed
search_preferences = "EgJAAQ%3D%3D" if live else None # 'Live' filter code
videos_search = VideosSearch(query, limit=20, searchPreferences=search_preferences)
for result in videos_search.result()['result']:
results.append({
'video_id': result['id'],
'thumbnail_url': result['thumbnails'][-1]['url'],
'title': result['title'],
})
return results
@staticmethod
def get_youtube_url(video_id: str) -> str:
"""
Constructs a YouTube URL for the given video ID.
:param video_id: The ID of the YouTube video.
:type video_id: str
:return: The YouTube URL for the video.
:rtype: str
"""
return f"https://www.youtube.com/watch?v={video_id}"
@staticmethod
def get_stream(youtube_url: str) -> Optional[str]:
"""
Retrieves the stream URL for a given YouTube video URL.
:param youtube_url: The URL of the YouTube video.
:type youtube_url: str
:return: The stream URL if available, otherwise None.
:rtype: Optional[str]
"""
try:
session = streamlink.Streamlink()
streams = session.streams(youtube_url)
if streams:
best_stream = streams.get("best")
return best_stream.url if best_stream else None
else:
logging.warning(f"No streams found for: {youtube_url}")
return None
except Exception as e:
logging.warning(f"An error occurred while getting stream: {e}")
return None
class LiveYouTubeObjectDetector:
"""
LiveYouTubeObjectDetector is a class that integrates object detection into live YouTube streams.
It uses the YOLO (You Only Look Once) model to detect objects in video frames captured from live streams.
The class also provides a Gradio interface for users to interact with the object detection system,
allowing them to search for live streams, view them, and detect objects in real-time.
Methods:
detect_objects: Detects objects in a live YouTube stream given its URL.
get_frame: Captures a frame from a live stream URL.
annotate: Annotates a frame with detected objects.
create_black_image: Creates a black placeholder image.
get_live_streams: Searches for live streams based on a query.
render: Sets up and launches the Gradio interface.
"""
def __init__(self):
"""Initializes the LiveYouTubeObjectDetector with YOLO model and UI components."""
logging.getLogger().setLevel(logging.DEBUG)
self.model = YOLO("yolov8x.pt")
self.model.fuse()
self.streams = self.get_live_streams("world live cams")
async def detect_objects(self, url: str) -> Tuple[Image.Image, List[Tuple[Tuple[int, int, int, int], str]]]:
"""
Detects objects in the given live YouTube stream URL.
:param url: The URL of the live YouTube video.
:type url: str
:return: A tuple containing the annotated image and a list of annotations.
:rtype: Tuple[Image.Image, List[Tuple[Tuple[int, int, int, int], str]]]
"""
stream_url = SearchService.get_stream(url)
if not stream_url:
logging.error(f"Unable to find a stream for: {url}")
return self.create_black_image()
frame = await self.get_frame(stream_url)
if frame is None:
logging.error(f"Unable to capture frame for: {url}")
return self.create_black_image()
return self.annotate(frame)
async def get_frame(self, stream_url: str) -> Optional[np.ndarray]:
"""
Captures a frame from the given live stream URL.
:param stream_url: The URL of the live stream.
:type stream_url: str
:return: The captured frame as a numpy array, or None if capture fails.
:rtype: Optional[np.ndarray]
"""
if not stream_url:
return None
try:
reader = iio.imiter(stream_url, plugin='ffmpeg', fps=1)
loop = asyncio.get_event_loop()
frame = await loop.run_in_executor(None, next, reader, None)
return frame
except StopIteration:
logging.warning("Could not read frame from stream.")
return None
except Exception as e:
logging.warning(f"An error occurred while capturing the frame: {e}")
return None
def annotate(self, frame: np.ndarray) -> Tuple[Image.Image, List[Tuple[Tuple[int, int, int, int], str]]]:
"""
Annotates the given frame with detected objects and their bounding boxes.
:param frame: The frame to be annotated.
:type frame: np.ndarray
:return: A tuple of the annotated PIL image and list of annotations.
:rtype: Tuple[Image.Image, List[Tuple[Tuple[int, int, int, int], str]]]
"""
results = self.model(frame)[0]
annotations = []
boxes = results.boxes
for box in boxes:
x1, y1, x2, y2 = box.xyxy[0].tolist()
class_id = int(box.cls[0])
class_name = self.model.names[class_id]
bbox_coords = (int(x1), int(y1), int(x2), int(y2))
annotations.append((bbox_coords, class_name))
pil_image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
return pil_image, annotations
@staticmethod
def create_black_image() -> Tuple[Image.Image, List]:
"""
Creates a black image of fixed dimensions.
:return: A black image as a PIL Image and an empty list of annotations.
:rtype: Tuple[Image.Image, List]
"""
black_image = np.zeros((720, 1280, 3), dtype=np.uint8)
pil_black_image = Image.fromarray(black_image)
return pil_black_image, []
def get_live_streams(self, query: str = "") -> List[Dict[str, Any]]:
"""
Searches for live streams on YouTube based on the given query.
:param query: The search query for live streams.
:type query: str
:return: A list of dictionaries containing information about each live stream.
:rtype: List[Dict[str, str]]
"""
return SearchService.search(query if query else "world live cams", live=True)
def render(self):
"""
Sets up and launches the Gradio interface for the application.
This method creates the Gradio UI elements and defines the behavior of the application.
It includes the setup of interactive widgets like galleries, textboxes, and buttons,
and defines the actions triggered by user interactions with these widgets.
The Gradio interface allows users to search for live YouTube streams, select a stream,
and run object detection on the selected live stream.
"""
with gr.Blocks(title="Object Detection in Live YouTube Streams", css=".gradio-container {background-color: #f5f5f5}", theme=gr.themes.Soft()) as app:
gr.HTML("<h1 style='text-align: center; color: #1E88E5;'>Object Detection in Live YouTube Streams</h1>")
with gr.Tabs():
with gr.TabItem("Live Stream Detection"):
with gr.Row():
stream_input = gr.Textbox(label="URL of Live YouTube Video", placeholder="Enter YouTube live stream URL...", interactive=True)
submit_button = gr.Button("Detect Objects", variant="primary")
annotated_image = gr.AnnotatedImage(label="Detection Result", height=480)
status_text = gr.Markdown(value="Status: Ready", visible=False)
async def detect_objects_from_url(url):
status_text.update(value="Status: Processing...", visible=True)
try:
result = await self.detect_objects(url)
status_text.update(value="Status: Done", visible=True)
return result
except Exception as e:
logging.error(f"An error occurred: {e}")
status_text.update(value=f"Status: Error - {e}", visible=True)
return self.create_black_image()
submit_button.click(fn=detect_objects_from_url, inputs=[stream_input], outputs=[annotated_image], api_name="detect_objects")
with gr.TabItem("Search Live Streams"):
with gr.Row():
search_input = gr.Textbox(label="Search for Live YouTube Streams", placeholder="Enter search query...", interactive=True)
search_button = gr.Button("Search", variant="secondary")
gallery = gr.Gallery(label="Live YouTube Streams", show_label=False).style(grid=[4], height="auto")
gallery.style(item_height=150)
status_text_search = gr.Markdown(value="", visible=False)
def search_live_streams(query):
status_text_search.update(value="Searching...", visible=True)
self.streams = self.get_live_streams(query)
gallery_items = []
for stream in self.streams:
thumb_url = stream["thumbnail_url"]
title = stream["title"]
video_id = stream["video_id"]
gallery_items.append((thumb_url, title, video_id))
status_text_search.update(value="Search Results:", visible=True)
return gr.update(value=gallery_items)
search_button.click(fn=search_live_streams, inputs=[search_input], outputs=[gallery], api_name="search_streams")
async def detect_objects_from_gallery_item(evt: gr.SelectData):
index = evt.index
if index is not None and index < len(self.streams):
selected_stream = self.streams[index]
stream_url = SearchService.get_youtube_url(selected_stream["video_id"])
stream_input.value = stream_url
result = await self.detect_objects(stream_url)
annotated_image.update(value=result[0], annotations=result[1])
with gr.Row():
annotated_image.render()
return result
gallery.select(fn=detect_objects_from_gallery_item, inputs=None, outputs=None)
gr.Markdown(
"""
**Instructions:**
- **Live Stream Detection Tab:** Enter a YouTube live stream URL and click 'Detect Objects' to view the real-time object detection.
- **Search Live Streams Tab:** Search for live streams on YouTube, select one from the gallery, and view object detection results.
"""
)
gr.HTML("<footer style='text-align: center; color: gray;'>Developed using Gradio and YOLO</footer>")
app.queue(concurrency_count=3).launch()
if __name__ == "__main__":
LiveYouTubeObjectDetector().render() |