File size: 15,477 Bytes
97ed94f 8f53b45 97ed94f 8f53b45 97ed94f 8f53b45 97ed94f 8f53b45 97ed94f 7dbaf21 b864380 8f53b45 97ed94f 87a479d 7dbaf21 8f53b45 7dbaf21 8f53b45 97ed94f 8f53b45 b864380 87a479d b864380 97ed94f 8f53b45 97ed94f 8f53b45 97ed94f 85562af b864380 8f53b45 97ed94f 8f53b45 97ed94f 8f53b45 644db4b 8f53b45 644db4b 8f53b45 644db4b 8f53b45 644db4b b864380 644db4b 8f53b45 644db4b 8f53b45 644db4b b864380 8f53b45 7dbaf21 8f53b45 97ed94f b864380 97ed94f 8f53b45 97ed94f b864380 7dbaf21 b864380 7dbaf21 b864380 87a479d 8f53b45 97ed94f 8f53b45 97ed94f 85562af b864380 97ed94f b864380 8f53b45 97ed94f 87a479d b864380 7dbaf21 8f53b45 b864380 7dbaf21 87a479d b864380 8f53b45 97ed94f b864380 8f53b45 056a3fd b864380 97ed94f c4cb2d4 97ed94f 8f53b45 b864380 8f53b45 7dbaf21 e42b13d 8f53b45 b864380 97ed94f 7dbaf21 97ed94f 8f53b45 7dbaf21 97ed94f 8f53b45 87a479d 7dbaf21 87a479d 8f53b45 97ed94f 8f53b45 7dbaf21 97ed94f 8f53b45 b864380 97ed94f 644db4b 8f53b45 8b391b7 8f53b45 b864380 999040d 8f53b45 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 |
"""
This module integrates real-time object detection into live YouTube streams using the YOLO (You Only Look Once) model, and provides an interactive user interface through Gradio. It is designed to allow users to search for live YouTube streams and apply object detection to these streams in real time.
Main Features:
- Search for live YouTube streams using specific queries.
- Retrieve live stream URLs using the Streamlink library.
- Perform real-time object detection on live streams using the YOLO model.
- Display the live stream and object detection results through a Gradio interface.
The module comprises several key components:
- `SearchFilter`: An enumeration for YouTube search filters.
- `SearchService`: A service class to search for YouTube videos and retrieve live stream URLs.
- `LiveYouTubeObjectDetector`: The main class integrating the YOLO model and Gradio UI, handling the entire workflow of searching, streaming, and object detection.
Dependencies:
- cv2 (OpenCV): Used for image processing tasks.
- Gradio: Provides the interactive web-based user interface.
- innertube, streamlink: Used for interacting with YouTube and retrieving live stream data.
- numpy: Utilized for numerical operations on image data.
- PIL (Pillow): A Python Imaging Library for opening, manipulating, and saving images.
- ultralytics YOLO: The YOLO model implementation for object detection.
Usage:
Run this file to launch the Gradio interface, which allows users to input search queries for YouTube live streams, select a stream, and perform object detection on the selected live stream.
"""
import logging
import os
import sys
from enum import Enum
from typing import Any, Dict, List, Optional, Tuple
import cv2
import gradio as gr
import innertube
import numpy as np
import streamlink
from PIL import Image
from ultralytics import YOLO
# Set up logging
logging.basicConfig(stream=sys.stderr, level=logging.DEBUG)
class SearchFilter(Enum):
"""
An enumeration for specifying different types of YouTube search filters.
This Enum class is used to define filters for categorizing YouTube search
results into either live or regular video content. It is utilized in
conjunction with the `SearchService` class to refine YouTube searches
based on the type of content being sought.
Attributes:
LIVE (str): Represents the filter code for live video content on YouTube.
VIDEO (str): Represents the filter code for regular, non-live video content on YouTube.
"""
LIVE = ("EgJAAQ%3D%3D", "Live")
VIDEO = ("EgIQAQ%3D%3D", "Video")
def __init__(self, code, human_readable):
"""Initializes the SearchFilter with a code and a human-readable string.
:param code: The filter code used in YouTube search queries.
:type code: str
:param human_readable: A human-readable representation of the filter.
:type human_readable: str
"""
self.code = code
self.human_readable = human_readable
def __str__(self):
"""Returns the human-readable representation of the filter.
:return: The human-readable representation of the filter.
:rtype: str
"""
return self.human_readable
class SearchService:
"""
SearchService provides functionality to search for YouTube videos using the
InnerTube API and retrieve live stream URLs using the Streamlink library.
This service allows filtering search results to either live or regular video
content and parsing the search response to extract relevant video information.
It also constructs YouTube URLs for given video IDs and retrieves the best
available stream URL for live YouTube videos.
"""
@staticmethod
def search(query: Optional[str], filter: SearchFilter = SearchFilter.VIDEO):
"""Searches YouTube for videos matching the given query and filter.
:param query: The search query.
:type query: Optional[str]
:param filter: The search filter to apply.
:type filter: SearchFilter
:return: A list of search results, each a dictionary with video details.
:rtype: List[Dict[str, Any]]
"""
response = SearchService._search(query, filter)
results = SearchService.parse(response)
return results
@staticmethod
def parse(data: Dict[str, Any]) -> List[Dict[str, str]]:
"""Parses the raw search response data into a list of video details.
:param data: The raw search response data from YouTube.
:type data: Dict[str, Any]
:return: A list of parsed video details.
:rtype: List[Dict[str, str]]
"""
results = []
try:
contents = data["contents"]["twoColumnSearchResultsRenderer"]["primaryContents"]["sectionListRenderer"]["contents"]
for content in contents:
items = content.get("itemSectionRenderer", {}).get("contents", [])
for item in items:
if "videoRenderer" in item:
renderer = item["videoRenderer"]
video_id = renderer.get("videoId", "")
thumbnails = renderer.get("thumbnail", {}).get("thumbnails", [])
thumbnail_url = thumbnails[-1]["url"] if thumbnails else ""
title_runs = renderer.get("title", {}).get("runs", [])
title = "".join(run.get("text", "") for run in title_runs)
results.append(
{
"video_id": video_id,
"thumbnail_url": thumbnail_url,
"title": title,
}
)
except Exception as e:
logging.error(f"Error parsing search results: {e}")
return results
@staticmethod
def _search(query: Optional[str] = None, filter: SearchFilter = SearchFilter.VIDEO) -> Dict[str, Any]:
"""Performs a YouTube search with the given query and filter.
:param query: The search query.
:type query: Optional[str]
:param filter: The search filter to apply.
:type filter: SearchFilter
:return: The raw search response data from YouTube.
:rtype: Dict[str, Any]
"""
client = innertube.InnerTube(client_name="WEB", client_version="2.20230920.00.00")
response = client.search(query=query, params=filter.code if filter else None)
return response
@staticmethod
def get_youtube_url(video_id: str) -> str:
"""Constructs a YouTube URL for the given video ID.
:param video_id: The ID of the YouTube video.
:type video_id: str
:return: The YouTube URL for the video.
:rtype: str
"""
return f"https://www.youtube.com/watch?v={video_id}"
@staticmethod
def get_stream(youtube_url: str) -> Optional[str]:
"""Retrieves the stream URL for a given YouTube video URL.
:param youtube_url: The URL of the YouTube video.
:type youtube_url: str
:return: The stream URL if available, otherwise None.
:rtype: Optional[str]
"""
try:
session = streamlink.Streamlink()
streams = session.streams(youtube_url)
if streams:
best_stream = streams.get("best")
return best_stream.url if best_stream else None
else:
logging.warning(f"No streams found for: {youtube_url}")
return None
except Exception as e:
logging.warning(f"An error occurred while getting stream: {e}")
return None
INITIAL_STREAMS = SearchService.search("world live cams", SearchFilter.LIVE)
class LiveYouTubeObjectDetector:
"""
LiveYouTubeObjectDetector is a class that integrates object detection into live YouTube streams.
It uses the YOLO model to detect objects in video frames captured from live streams.
The class also provides a Gradio interface for users to interact with the object detection system,
allowing them to search for live streams, view them, and detect objects in real-time.
"""
def __init__(self):
"""Initializes the LiveYouTubeObjectDetector with YOLO model and UI components."""
logging.getLogger().setLevel(logging.DEBUG)
self.model = YOLO("yolo11n.pt") # Using yolo11n.pt as per your request
self.streams = INITIAL_STREAMS
# Gradio UI
initial_gallery_items = [(stream["thumbnail_url"], stream["title"]) for stream in self.streams]
self.gallery = gr.Gallery(label="Live YouTube Videos",
value=initial_gallery_items,
show_label=True,
columns=[4],
rows=[5],
object_fit="contain",
height="auto",
allow_preview=False)
self.search_input = gr.Textbox(label="Search Live YouTube Videos")
self.stream_input = gr.Textbox(label="URL of Live YouTube Video")
self.annotated_image = gr.AnnotatedImage(show_label=False)
self.search_button = gr.Button("Search", size="lg")
self.submit_button = gr.Button("Detect Objects", variant="primary", size="lg")
self.page_title = gr.HTML("<center><h1><b>Object Detection in Live YouTube Streams</b></h1></center>")
def detect_objects(self, url: str) -> Tuple[Image.Image, List[Tuple[Tuple[int, int, int, int], str]]]:
"""
Detects objects in the given live YouTube stream URL.
:param url: The URL of the live YouTube video.
:type url: str
:return: A tuple containing the annotated image and a list of annotations.
:rtype: Tuple[Image.Image, List[Tuple[Tuple[int, int, int, int], str]]]
"""
stream_url = SearchService.get_stream(url)
if not stream_url:
logging.error(f"Unable to find a stream for: {url}")
return self.create_black_image()
frame = self.get_frame(stream_url)
if frame is None:
logging.error(f"Unable to capture frame for: {url}")
return self.create_black_image()
return self.annotate(frame)
def get_frame(self, stream_url: str) -> Optional[np.ndarray]:
"""
Captures a frame from the given live stream URL.
:param stream_url: The URL of the live stream.
:type stream_url: str
:return: The captured frame as a numpy array, or None if capture fails.
:rtype: Optional[np.ndarray]
"""
if not stream_url:
return None
try:
cap = cv2.VideoCapture(stream_url)
ret, frame = cap.read()
cap.release()
if ret and frame is not None:
return cv2.resize(frame, (1920, 1080))
else:
logging.warning("Unable to process the HLS stream with cv2.VideoCapture.")
return None
except Exception as e:
logging.warning(f"An error occurred while capturing the frame: {e}")
return None
def annotate(self, frame: np.ndarray) -> Tuple[Image.Image, List[Tuple[Tuple[int, int, int, int], str]]]:
"""
Annotates the given frame with detected objects and their bounding boxes.
:param frame: The frame to be annotated.
:type frame: np.ndarray
:return: A tuple of the annotated PIL image and list of annotations.
:rtype: Tuple[Image.Image, List[Tuple[Tuple[int, int, int, int], str]]]
"""
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
predictions = self.model.predict(frame_rgb)
annotations = []
result = predictions[0]
boxes = result.boxes
for box in boxes:
x1, y1, x2, y2 = box.xyxy[0].tolist()
class_id = int(box.cls[0])
class_name = self.model.names[class_id]
bbox_coords = (int(x1), int(y1), int(x2), int(y2))
annotations.append((bbox_coords, class_name))
return Image.fromarray(frame_rgb), annotations
@staticmethod
def create_black_image() -> Tuple[Image.Image, List]:
"""
Creates a black image of fixed dimensions.
:return: A black image as a PIL image and an empty list of annotations.
:rtype: Tuple[Image.Image, List]
"""
black_image = np.zeros((1080, 1920, 3), dtype=np.uint8)
pil_black_image = Image.fromarray(black_image)
return pil_black_image, []
@staticmethod
def get_live_streams(query=""):
"""
Searches for live streams on YouTube based on the given query.
:param query: The search query for live streams, defaults to 'world live cams'.
:type query: str
:return: A list of dictionaries containing information about each live stream.
:rtype: List[Dict[str, str]]
"""
return SearchService.search(query if query else "world live cams", SearchFilter.LIVE)
def render(self):
"""
Sets up and launches the Gradio interface for the application.
The Gradio interface allows users to search for live YouTube streams, select a stream,
and run object detection on the selected live stream.
"""
with gr.Blocks(title="Object Detection in Live YouTube Streams",
css="footer {visibility: hidden}", analytics_enabled=False) as app:
self.page_title.render()
with gr.Column():
with gr.Group():
with gr.Row():
self.stream_input.render()
self.submit_button.render()
self.annotated_image.render()
with gr.Group():
with gr.Row():
self.search_input.render()
self.search_button.render()
with gr.Row():
self.gallery.render()
@self.gallery.select(inputs=None, outputs=[self.annotated_image, self.stream_input], scroll_to_output=True)
def detect_objects_from_gallery_item(evt: gr.SelectData):
if evt.index is not None and evt.index < len(self.streams):
selected_stream = self.streams[evt.index]
stream_url = SearchService.get_youtube_url(selected_stream["video_id"])
annotated_image, annotations = self.detect_objects(stream_url)
self.stream_input.value = stream_url
return annotated_image, annotations, stream_url
return None, "", ""
@self.search_button.click(inputs=[self.search_input], outputs=[self.gallery])
def search_live_streams(query):
self.streams = self.get_live_streams(query)
gallery_items = [(stream["thumbnail_url"], stream["title"]) for stream in self.streams]
return gallery_items
@self.submit_button.click(inputs=[self.stream_input], outputs=[self.annotated_image])
def detect_objects_from_url(url):
return self.detect_objects(url)
app.queue().launch(show_api=False, debug=True)
if __name__ == "__main__":
LiveYouTubeObjectDetector().render()
|