File size: 10,720 Bytes
97ed94f 3834bae 97ed94f 13d6ce1 97ed94f 8f53b45 97ed94f 13d6ce1 8f53b45 97ed94f b864380 8f53b45 97ed94f 87a479d 7dbaf21 8f53b45 7dbaf21 8f53b45 a74a9f0 8f53b45 b864380 8f53b45 644db4b 8f53b45 b864380 644db4b 8f53b45 644db4b 8f53b45 644db4b b864380 8f53b45 b864380 97ed94f a74a9f0 97ed94f a74a9f0 97ed94f a74a9f0 b864380 a74a9f0 3834bae a74a9f0 3834bae b864380 7dbaf21 b864380 8f53b45 97ed94f b864380 5c6a649 8f53b45 87a479d b864380 7dbaf21 8f53b45 b864380 7dbaf21 87a479d b864380 8f53b45 b864380 8f53b45 a74a9f0 8f53b45 a74a9f0 8f53b45 a74a9f0 056a3fd b864380 97ed94f a74a9f0 b864380 a74a9f0 7dbaf21 e42b13d a74a9f0 b864380 97ed94f 7dbaf21 a74a9f0 87a479d 7dbaf21 87a479d 8f53b45 3834bae b864380 644db4b 3834bae 8f53b45 8b391b7 8f53b45 3834bae 8f53b45 eaaac1a 3834bae 8f53b45 3834bae 8f53b45 3834bae 8f53b45 999040d 13d6ce1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
"""
This module integrates real-time object detection into live YouTube streams using the YOLO model and provides an interactive user interface through Gradio. It allows users to search for live YouTube streams and apply object detection to these streams in real time.
Main Features:
- Search for live YouTube streams using specific queries.
- Retrieve live stream URLs using the `pytube` library.
- Perform real-time object detection on live streams using the YOLO model.
- Display the live stream and object detection results through a Gradio interface.
Dependencies:
- cv2 (OpenCV): Used for image processing tasks.
- Gradio: Provides the interactive web-based user interface.
- `pytube`: Used for retrieving live stream URLs from YouTube.
- innertube: Used for interacting with YouTube's internal API.
- numpy: Utilized for numerical operations on image data.
- PIL (Pillow): A Python Imaging Library for opening, manipulating, and saving images.
- ultralytics YOLO: The YOLO model implementation for object detection.
Usage:
Run this file to launch the Gradio interface, which allows users to input search queries for YouTube live streams, select a stream, and perform object detection on the selected live stream.
"""
import logging
import sys
from enum import Enum
from typing import Any, Dict, List, Optional, Tuple
import cv2
import gradio as gr
import innertube
import numpy as np
from PIL import Image
from ultralytics import YOLO
import yt_dlp
logging.basicConfig(stream=sys.stderr, level=logging.DEBUG)
class SearchFilter(Enum):
LIVE = ("EgJAAQ%3D%3D", "Live")
VIDEO = ("EgIQAQ%3D%3D", "Video")
def __init__(self, code, human_readable):
self.code = code
self.human_readable = human_readable
def __str__(self):
return self.human_readable
class SearchService:
@staticmethod
def search(query: Optional[str], filter: SearchFilter = SearchFilter.VIDEO):
response = SearchService._search(query, filter)
results = SearchService.parse(response)
return results
@staticmethod
def parse(data: Dict[str, Any]) -> List[Dict[str, str]]:
results = []
try:
contents = data["contents"]["twoColumnSearchResultsRenderer"]["primaryContents"]["sectionListRenderer"]["contents"]
for content in contents:
items = content.get("itemSectionRenderer", {}).get("contents", [])
for item in items:
if "videoRenderer" in item:
renderer = item["videoRenderer"]
video_id = renderer.get("videoId", "")
thumbnails = renderer.get("thumbnail", {}).get("thumbnails", [])
thumbnail_url = thumbnails[-1]["url"] if thumbnails else ""
title_runs = renderer.get("title", {}).get("runs", [])
title = "".join(run.get("text", "") for run in title_runs)
results.append(
{
"video_id": video_id,
"thumbnail_url": thumbnail_url,
"title": title,
}
)
except Exception as e:
logging.error(f"Error parsing search results: {e}")
return results
@staticmethod
def _search(query: Optional[str] = None, filter: SearchFilter = SearchFilter.VIDEO) -> Dict[str, Any]:
client = innertube.InnerTube(client_name="WEB", client_version="2.20230920.00.00")
response = client.search(query=query, params=filter.code if filter else None)
return response
@staticmethod
def get_youtube_url(video_id: str) -> str:
return f"https://www.youtube.com/watch?v={video_id}"
@staticmethod
def get_stream(youtube_url: str) -> Optional[str]:
"""Retrieves the livestream URL for a given YouTube video URL using yt-dlp.
:param youtube_url: The URL of the YouTube video.
:type youtube_url: str
:return: The livestream URL if available, otherwise None.
:rtype: Optional[str]
"""
ydl_opts = {
'format': 'best',
'quiet': True,
'no_warnings': True,
'force_generic_extractor': False,
'skip_download': True,
}
try:
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
info_dict = ydl.extract_info(youtube_url, download=False)
if info_dict.get('is_live'):
live_url = info_dict.get('url')
if live_url:
logging.debug(f"Found livestream URL: {live_url}")
return live_url
else:
logging.warning(f"Livestream URL not found for: {youtube_url}")
return None
else:
logging.warning(f"Video is not a livestream: {youtube_url}")
return None
except Exception as e:
logging.warning(f"An error occurred while getting stream: {e}")
return None
INITIAL_STREAMS = SearchService.search("world live cams", SearchFilter.LIVE)
class LiveYouTubeObjectDetector:
def __init__(self):
logging.getLogger().setLevel(logging.DEBUG)
self.model = YOLO("yolo11n.pt")
self.streams = INITIAL_STREAMS
# Gradio UI
initial_gallery_items = [(stream["thumbnail_url"], stream["title"]) for stream in self.streams]
self.gallery = gr.Gallery(label="Live YouTube Videos",
value=initial_gallery_items,
show_label=True,
columns=[4],
rows=[5],
object_fit="contain",
height="auto",
allow_preview=False)
self.search_input = gr.Textbox(label="Search Live YouTube Videos")
self.stream_input = gr.Textbox(label="URL of Live YouTube Video")
self.annotated_image = gr.AnnotatedImage(show_label=False)
self.search_button = gr.Button("Search", size="lg")
self.submit_button = gr.Button("Detect Objects", variant="primary", size="lg")
self.page_title = gr.HTML("<center><h1><b>Object Detection in Live YouTube Streams</b></h1></center>")
def detect_objects(self, url: str) -> Tuple[Image.Image, List[Tuple[Tuple[int, int, int, int], str]]]:
stream_url = SearchService.get_stream(url)
if not stream_url:
logging.error(f"Unable to find a stream for: {url}")
return self.create_black_image()
frame = self.get_frame(stream_url)
if frame is None:
logging.error(f"Unable to capture frame for: {url}")
return self.create_black_image()
return self.annotate(frame)
def get_frame(self, stream_url: str) -> Optional[np.ndarray]:
if not stream_url:
return None
try:
cap = cv2.VideoCapture(stream_url)
if not cap.isOpened():
logging.warning("Failed to open video capture.")
return None
ret, frame = cap.read()
cap.release()
if ret and frame is not None:
return cv2.resize(frame, (1280, 720))
else:
logging.warning("Unable to read frame from the live stream.")
return None
except Exception as e:
logging.warning(f"An error occurred while capturing the frame: {e}")
return None
def annotate(self, frame: np.ndarray) -> Tuple[Image.Image, List[Tuple[Tuple[int, int, int, int], str]]]:
results = self.model(frame)[0]
annotations = []
boxes = results.boxes
for box in boxes:
x1, y1, x2, y2 = box.xyxy[0].tolist()
class_id = int(box.cls[0])
class_name = self.model.names[class_id]
bbox_coords = (int(x1), int(y1), int(x2), int(y2))
annotations.append((bbox_coords, class_name))
pil_image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
return pil_image, annotations
@staticmethod
def create_black_image() -> Tuple[Image.Image, List]:
black_image = np.zeros((720, 1280, 3), dtype=np.uint8)
pil_black_image = Image.fromarray(black_image)
return pil_black_image, []
@staticmethod
def get_live_streams(query=""):
return SearchService.search(query if query else "world live cams", SearchFilter.LIVE)
def render(self):
with gr.Blocks(title="Object Detection in Live YouTube Streams",
css="footer {visibility: hidden}",
analytics_enabled=False) as app:
self.page_title.render()
with gr.Column():
with gr.Group():
with gr.Row():
self.stream_input.render()
self.submit_button.render()
self.annotated_image.render()
with gr.Group():
with gr.Row():
self.search_input.render()
self.search_button.render()
with gr.Row():
self.gallery.render()
@self.gallery.select(inputs=None, outputs=[self.annotated_image, self.stream_input], scroll_to_output=True)
def detect_objects_from_gallery_item(evt: gr.SelectData):
if evt.index is not None and evt.index < len(self.streams):
selected_stream = self.streams[evt.index]
stream_url = SearchService.get_youtube_url(selected_stream["video_id"])
self.stream_input.value = stream_url
annotated_image_result = self.detect_objects(stream_url)
return annotated_image_result, stream_url
return self.create_black_image(), ""
@self.search_button.click(inputs=[self.search_input], outputs=[self.gallery])
def search_live_streams(query):
self.streams = self.get_live_streams(query)
gallery_items = [(stream["thumbnail_url"], stream["title"]) for stream in self.streams]
return gallery_items
@self.submit_button.click(inputs=[self.stream_input], outputs=[self.annotated_image])
def detect_objects_from_url(url):
return self.detect_objects(url)
app.queue().launch(show_api=False, debug=True)
if __name__ == "__main__":
LiveYouTubeObjectDetector().render() |