Spaces:
Build error
Build error
import logging | |
import gradio as gr | |
import pandas as pd | |
from autogluon.tabular import TabularPredictor | |
# Set up logging | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
# Load the AutoGluon model from the Hugging Face Hub | |
MODEL_ID = "aai540-group3/diabetes-readmission" | |
predictor = TabularPredictor.load(MODEL_ID) | |
# Define constants for the Gradio interface | |
AGE_RANGE = (0, 100) | |
TIME_IN_HOSPITAL_RANGE = (1, 14) | |
NUM_PROCEDURES_RANGE = (0, 10) | |
NUM_MEDICATIONS_RANGE = (0, 20) | |
NUMBER_DIAGNOSES_RANGE = (1, 10) | |
READMITTED_CHOICES = ["<30", ">30", "NO"] | |
# Define the inference function | |
def predict( | |
age, time_in_hospital, num_procedures, num_medications, number_diagnoses, | |
metformin, repaglinide, nateglinide, chlorpropamide, glimepiride, | |
glipizide, glyburide, pioglitazone, rosiglitazone, acarbose, insulin, | |
readmitted | |
): | |
# Create a DataFrame from the input features | |
input_data = pd.DataFrame([{ | |
"age": age, | |
"time_in_hospital": time_in_hospital, | |
"num_procedures": num_procedures, | |
"num_medications": num_medications, | |
"number_diagnoses": number_diagnoses, | |
"metformin": int(metformin), | |
"repaglinide": int(repaginide), | |
"nateglinide": int(nateglinide), | |
"chlorpropamide": int(chlorpropamide), | |
"glimepiride": int(glimepiride), | |
"glipizide": int(glipizide), | |
"glyburide": int(glyburide), | |
"pioglitazone": int(pioglitazone), | |
"rosiglitazone": int(rosiglitazone), | |
"acarbose": int(acarbose), | |
"insulin": int(insulin), | |
"readmitted": readmitted | |
}]) | |
try: | |
# Make a prediction using the AutoGluon predictor | |
prediction = predictor.predict(input_data) | |
logger.info(f"Prediction received: {prediction}") | |
return f"<h1 style='font-size: 48px; color: green;'>Prediction: {prediction.iloc[0]}</h1>" | |
except Exception as e: | |
logger.error(f"Error in prediction: {e}") | |
return "<h1 style='font-size: 48px; color: red;'>Error in prediction</h1>" | |
# Create Gradio interface | |
iface = gr.Interface( | |
fn=predict, | |
inputs=[ | |
gr.Slider(minimum=AGE_RANGE[0], maximum=AGE_RANGE[1], label="Age"), | |
gr.Slider(minimum=TIME_IN_HOSPITAL_RANGE[0], maximum=TIME_IN_HOSPITAL_RANGE[1], label="Time in Hospital (days)"), | |
gr.Slider(minimum=NUM_PROCEDURES_RANGE[0], maximum=NUM_PROCEDURES_RANGE[1], label="Number of Procedures"), | |
gr.Slider(minimum=NUM_MEDICATIONS_RANGE[0], maximum=NUM_MEDICATIONS_RANGE[1], label="Number of Medications"), | |
gr.Slider(minimum=NUMBER_DIAGNOSES_RANGE[0], maximum=NUMBER_DIAGNOSES_RANGE[1], label="Number of Diagnoses"), | |
gr.Checkbox(label="Metformin"), | |
gr.Checkbox(label="Repaglinide"), | |
gr.Checkbox(label="Nateglinide"), | |
gr.Checkbox(label="Chlorpropamide"), | |
gr.Checkbox(label="Glimepiride"), | |
gr.Checkbox(label="Glipizide"), | |
gr.Checkbox(label="Glyburide"), | |
gr.Checkbox(label="Pioglitazone"), | |
gr.Checkbox(label="Rosiglitazone"), | |
gr.Checkbox(label="Acarbose"), | |
gr.Checkbox(label="Insulin"), | |
gr.Radio(choices=READMITTED_CHOICES, label="Readmitted") | |
], | |
outputs=gr.HTML(label="Prediction"), | |
title="Diabetes Readmission Prediction", | |
description="Enter patient data to predict the likelihood of readmission." | |
) | |
# Launch the Gradio app | |
if __name__ == "__main__": | |
iface.launch() |