Spaces:
No application file
No application file
File size: 139,236 Bytes
b7731cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 |
# Copyright 2000, 2004 by Brad Chapman.
# Revisions copyright 2010-2013, 2015-2018 by Peter Cock.
# All rights reserved.
#
# This file is part of the Biopython distribution and governed by your
# choice of the "Biopython License Agreement" or the "BSD 3-Clause License".
# Please see the LICENSE file that should have been included as part of this
# package.
"""Code for dealing with sequence alignments.
One of the most important things in this module is the MultipleSeqAlignment
class, used in the Bio.AlignIO module.
"""
import sys
import collections
import copy
import importlib
import warnings
import numbers
from itertools import zip_longest
try:
import numpy
except ImportError:
from Bio import MissingPythonDependencyError
raise MissingPythonDependencyError(
"Please install numpy if you want to use Bio.Align. "
"See http://www.numpy.org/"
) from None
from Bio import BiopythonDeprecationWarning
from Bio.Align import _aligners
from Bio.Align import substitution_matrices
from Bio.Seq import Seq, MutableSeq, reverse_complement, UndefinedSequenceError
from Bio.SeqRecord import SeqRecord, _RestrictedDict
# Import errors may occur here if a compiled aligners.c file
# (_aligners.pyd or _aligners.so) is missing or if the user is
# importing from within the Biopython source tree, see PR #2007:
# https://github.com/biopython/biopython/pull/2007
AlignmentCounts = collections.namedtuple(
"AlignmentCounts", ["gaps", "identities", "mismatches"]
)
class MultipleSeqAlignment:
"""Represents a classical multiple sequence alignment (MSA).
By this we mean a collection of sequences (usually shown as rows) which
are all the same length (usually with gap characters for insertions or
padding). The data can then be regarded as a matrix of letters, with well
defined columns.
You would typically create an MSA by loading an alignment file with the
AlignIO module:
>>> from Bio import AlignIO
>>> align = AlignIO.read("Clustalw/opuntia.aln", "clustal")
>>> print(align)
Alignment with 7 rows and 156 columns
TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273285|gb|AF191659.1|AF191
TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273284|gb|AF191658.1|AF191
TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273287|gb|AF191661.1|AF191
TATACATAAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273286|gb|AF191660.1|AF191
TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273290|gb|AF191664.1|AF191
TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273289|gb|AF191663.1|AF191
TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273291|gb|AF191665.1|AF191
In some respects you can treat these objects as lists of SeqRecord objects,
each representing a row of the alignment. Iterating over an alignment gives
the SeqRecord object for each row:
>>> len(align)
7
>>> for record in align:
... print("%s %i" % (record.id, len(record)))
...
gi|6273285|gb|AF191659.1|AF191 156
gi|6273284|gb|AF191658.1|AF191 156
gi|6273287|gb|AF191661.1|AF191 156
gi|6273286|gb|AF191660.1|AF191 156
gi|6273290|gb|AF191664.1|AF191 156
gi|6273289|gb|AF191663.1|AF191 156
gi|6273291|gb|AF191665.1|AF191 156
You can also access individual rows as SeqRecord objects via their index:
>>> print(align[0].id)
gi|6273285|gb|AF191659.1|AF191
>>> print(align[-1].id)
gi|6273291|gb|AF191665.1|AF191
And extract columns as strings:
>>> print(align[:, 1])
AAAAAAA
Or, take just the first ten columns as a sub-alignment:
>>> print(align[:, :10])
Alignment with 7 rows and 10 columns
TATACATTAA gi|6273285|gb|AF191659.1|AF191
TATACATTAA gi|6273284|gb|AF191658.1|AF191
TATACATTAA gi|6273287|gb|AF191661.1|AF191
TATACATAAA gi|6273286|gb|AF191660.1|AF191
TATACATTAA gi|6273290|gb|AF191664.1|AF191
TATACATTAA gi|6273289|gb|AF191663.1|AF191
TATACATTAA gi|6273291|gb|AF191665.1|AF191
Combining this alignment slicing with alignment addition allows you to
remove a section of the alignment. For example, taking just the first
and last ten columns:
>>> print(align[:, :10] + align[:, -10:])
Alignment with 7 rows and 20 columns
TATACATTAAGTGTACCAGA gi|6273285|gb|AF191659.1|AF191
TATACATTAAGTGTACCAGA gi|6273284|gb|AF191658.1|AF191
TATACATTAAGTGTACCAGA gi|6273287|gb|AF191661.1|AF191
TATACATAAAGTGTACCAGA gi|6273286|gb|AF191660.1|AF191
TATACATTAAGTGTACCAGA gi|6273290|gb|AF191664.1|AF191
TATACATTAAGTATACCAGA gi|6273289|gb|AF191663.1|AF191
TATACATTAAGTGTACCAGA gi|6273291|gb|AF191665.1|AF191
Note - This object does NOT attempt to model the kind of alignments used
in next generation sequencing with multiple sequencing reads which are
much shorter than the alignment, and where there is usually a consensus or
reference sequence with special status.
"""
def __init__(
self, records, alphabet=None, annotations=None, column_annotations=None
):
"""Initialize a new MultipleSeqAlignment object.
Arguments:
- records - A list (or iterator) of SeqRecord objects, whose
sequences are all the same length. This may be an be an
empty list.
- alphabet - For backward compatibility only; its value should always
be None.
- annotations - Information about the whole alignment (dictionary).
- column_annotations - Per column annotation (restricted dictionary).
This holds Python sequences (lists, strings, tuples)
whose length matches the number of columns. A typical
use would be a secondary structure consensus string.
You would normally load a MSA from a file using Bio.AlignIO, but you
can do this from a list of SeqRecord objects too:
>>> from Bio.Seq import Seq
>>> from Bio.SeqRecord import SeqRecord
>>> from Bio.Align import MultipleSeqAlignment
>>> a = SeqRecord(Seq("AAAACGT"), id="Alpha")
>>> b = SeqRecord(Seq("AAA-CGT"), id="Beta")
>>> c = SeqRecord(Seq("AAAAGGT"), id="Gamma")
>>> align = MultipleSeqAlignment([a, b, c],
... annotations={"tool": "demo"},
... column_annotations={"stats": "CCCXCCC"})
>>> print(align)
Alignment with 3 rows and 7 columns
AAAACGT Alpha
AAA-CGT Beta
AAAAGGT Gamma
>>> align.annotations
{'tool': 'demo'}
>>> align.column_annotations
{'stats': 'CCCXCCC'}
"""
if alphabet is not None:
raise ValueError("The alphabet argument is no longer supported")
self._records = []
if records:
self.extend(records)
# Annotations about the whole alignment
if annotations is None:
annotations = {}
elif not isinstance(annotations, dict):
raise TypeError("annotations argument should be a dict")
self.annotations = annotations
# Annotations about each column of the alignment
if column_annotations is None:
column_annotations = {}
# Handle this via the property set function which will validate it
self.column_annotations = column_annotations
def _set_per_column_annotations(self, value):
if not isinstance(value, dict):
raise TypeError(
"The per-column-annotations should be a (restricted) dictionary."
)
# Turn this into a restricted-dictionary (and check the entries)
if len(self):
# Use the standard method to get the length
expected_length = self.get_alignment_length()
self._per_col_annotations = _RestrictedDict(length=expected_length)
self._per_col_annotations.update(value)
else:
# Bit of a problem case... number of columns is undefined
self._per_col_annotations = None
if value:
raise ValueError(
"Can't set per-column-annotations without an alignment"
)
def _get_per_column_annotations(self):
if self._per_col_annotations is None:
# This happens if empty at initialisation
if len(self):
# Use the standard method to get the length
expected_length = self.get_alignment_length()
else:
# Should this raise an exception? Compare SeqRecord behaviour...
expected_length = 0
self._per_col_annotations = _RestrictedDict(length=expected_length)
return self._per_col_annotations
column_annotations = property(
fget=_get_per_column_annotations,
fset=_set_per_column_annotations,
doc="""Dictionary of per-letter-annotation for the sequence.""",
)
def _str_line(self, record, length=50):
"""Return a truncated string representation of a SeqRecord (PRIVATE).
This is a PRIVATE function used by the __str__ method.
"""
if record.seq.__class__.__name__ == "CodonSeq":
if len(record.seq) <= length:
return f"{record.seq} {record.id}"
else:
return "%s...%s %s" % (
record.seq[: length - 3],
record.seq[-3:],
record.id,
)
else:
if len(record.seq) <= length:
return f"{record.seq} {record.id}"
else:
return "%s...%s %s" % (
record.seq[: length - 6],
record.seq[-3:],
record.id,
)
def __str__(self):
"""Return a multi-line string summary of the alignment.
This output is intended to be readable, but large alignments are
shown truncated. A maximum of 20 rows (sequences) and 50 columns
are shown, with the record identifiers. This should fit nicely on a
single screen. e.g.
>>> from Bio.Seq import Seq
>>> from Bio.SeqRecord import SeqRecord
>>> from Bio.Align import MultipleSeqAlignment
>>> a = SeqRecord(Seq("ACTGCTAGCTAG"), id="Alpha")
>>> b = SeqRecord(Seq("ACT-CTAGCTAG"), id="Beta")
>>> c = SeqRecord(Seq("ACTGCTAGATAG"), id="Gamma")
>>> align = MultipleSeqAlignment([a, b, c])
>>> print(align)
Alignment with 3 rows and 12 columns
ACTGCTAGCTAG Alpha
ACT-CTAGCTAG Beta
ACTGCTAGATAG Gamma
See also the alignment's format method.
"""
rows = len(self._records)
lines = [
"Alignment with %i rows and %i columns"
% (rows, self.get_alignment_length())
]
if rows <= 20:
lines.extend(self._str_line(rec) for rec in self._records)
else:
lines.extend(self._str_line(rec) for rec in self._records[:18])
lines.append("...")
lines.append(self._str_line(self._records[-1]))
return "\n".join(lines)
def __repr__(self):
"""Return a representation of the object for debugging.
The representation cannot be used with eval() to recreate the object,
which is usually possible with simple python objects. For example:
<Bio.Align.MultipleSeqAlignment instance (2 records of length 14)
at a3c184c>
The hex string is the memory address of the object, see help(id).
This provides a simple way to visually distinguish alignments of
the same size.
"""
# A doctest for __repr__ would be nice, but __class__ comes out differently
# if run via the __main__ trick.
return "<%s instance (%i records of length %i) at %x>" % (
self.__class__,
len(self._records),
self.get_alignment_length(),
id(self),
)
# This version is useful for doing eval(repr(alignment)),
# but it can be VERY long:
# return "%s(%r)" \
# % (self.__class__, self._records)
def __format__(self, format_spec):
"""Return the alignment as a string in the specified file format.
The format should be a lower case string supported as an output
format by Bio.AlignIO (such as "fasta", "clustal", "phylip",
"stockholm", etc), which is used to turn the alignment into a
string.
e.g.
>>> from Bio.Seq import Seq
>>> from Bio.SeqRecord import SeqRecord
>>> from Bio.Align import MultipleSeqAlignment
>>> a = SeqRecord(Seq("ACTGCTAGCTAG"), id="Alpha", description="")
>>> b = SeqRecord(Seq("ACT-CTAGCTAG"), id="Beta", description="")
>>> c = SeqRecord(Seq("ACTGCTAGATAG"), id="Gamma", description="")
>>> align = MultipleSeqAlignment([a, b, c])
>>> print(format(align, "fasta"))
>Alpha
ACTGCTAGCTAG
>Beta
ACT-CTAGCTAG
>Gamma
ACTGCTAGATAG
<BLANKLINE>
>>> print(format(align, "phylip"))
3 12
Alpha ACTGCTAGCT AG
Beta ACT-CTAGCT AG
Gamma ACTGCTAGAT AG
<BLANKLINE>
"""
if format_spec:
from io import StringIO
from Bio import AlignIO
handle = StringIO()
AlignIO.write([self], handle, format_spec)
return handle.getvalue()
else:
# Follow python convention and default to using __str__
return str(self)
def __iter__(self):
"""Iterate over alignment rows as SeqRecord objects.
e.g.
>>> from Bio.Seq import Seq
>>> from Bio.SeqRecord import SeqRecord
>>> from Bio.Align import MultipleSeqAlignment
>>> a = SeqRecord(Seq("ACTGCTAGCTAG"), id="Alpha")
>>> b = SeqRecord(Seq("ACT-CTAGCTAG"), id="Beta")
>>> c = SeqRecord(Seq("ACTGCTAGATAG"), id="Gamma")
>>> align = MultipleSeqAlignment([a, b, c])
>>> for record in align:
... print(record.id)
... print(record.seq)
...
Alpha
ACTGCTAGCTAG
Beta
ACT-CTAGCTAG
Gamma
ACTGCTAGATAG
"""
return iter(self._records)
def __len__(self):
"""Return the number of sequences in the alignment.
Use len(alignment) to get the number of sequences (i.e. the number of
rows), and alignment.get_alignment_length() to get the length of the
longest sequence (i.e. the number of columns).
This is easy to remember if you think of the alignment as being like a
list of SeqRecord objects.
"""
return len(self._records)
def get_alignment_length(self):
"""Return the maximum length of the alignment.
All objects in the alignment should (hopefully) have the same
length. This function will go through and find this length
by finding the maximum length of sequences in the alignment.
>>> from Bio.Seq import Seq
>>> from Bio.SeqRecord import SeqRecord
>>> from Bio.Align import MultipleSeqAlignment
>>> a = SeqRecord(Seq("ACTGCTAGCTAG"), id="Alpha")
>>> b = SeqRecord(Seq("ACT-CTAGCTAG"), id="Beta")
>>> c = SeqRecord(Seq("ACTGCTAGATAG"), id="Gamma")
>>> align = MultipleSeqAlignment([a, b, c])
>>> align.get_alignment_length()
12
If you want to know the number of sequences in the alignment,
use len(align) instead:
>>> len(align)
3
"""
max_length = 0
for record in self._records:
if len(record.seq) > max_length:
max_length = len(record.seq)
return max_length
def extend(self, records):
"""Add more SeqRecord objects to the alignment as rows.
They must all have the same length as the original alignment. For
example,
>>> from Bio.Seq import Seq
>>> from Bio.SeqRecord import SeqRecord
>>> from Bio.Align import MultipleSeqAlignment
>>> a = SeqRecord(Seq("AAAACGT"), id="Alpha")
>>> b = SeqRecord(Seq("AAA-CGT"), id="Beta")
>>> c = SeqRecord(Seq("AAAAGGT"), id="Gamma")
>>> d = SeqRecord(Seq("AAAACGT"), id="Delta")
>>> e = SeqRecord(Seq("AAA-GGT"), id="Epsilon")
First we create a small alignment (three rows):
>>> align = MultipleSeqAlignment([a, b, c])
>>> print(align)
Alignment with 3 rows and 7 columns
AAAACGT Alpha
AAA-CGT Beta
AAAAGGT Gamma
Now we can extend this alignment with another two rows:
>>> align.extend([d, e])
>>> print(align)
Alignment with 5 rows and 7 columns
AAAACGT Alpha
AAA-CGT Beta
AAAAGGT Gamma
AAAACGT Delta
AAA-GGT Epsilon
Because the alignment object allows iteration over the rows as
SeqRecords, you can use the extend method with a second alignment
(provided its sequences have the same length as the original alignment).
"""
if len(self):
# Use the standard method to get the length
expected_length = self.get_alignment_length()
else:
# Take the first record's length
records = iter(records) # records arg could be list or iterator
try:
rec = next(records)
except StopIteration:
# Special case, no records
return
expected_length = len(rec)
self._append(rec, expected_length)
# Can now setup the per-column-annotations as well, set to None
# while missing the length:
self.column_annotations = {}
# Now continue to the rest of the records as usual
for rec in records:
self._append(rec, expected_length)
def append(self, record):
"""Add one more SeqRecord object to the alignment as a new row.
This must have the same length as the original alignment (unless this is
the first record).
>>> from Bio import AlignIO
>>> align = AlignIO.read("Clustalw/opuntia.aln", "clustal")
>>> print(align)
Alignment with 7 rows and 156 columns
TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273285|gb|AF191659.1|AF191
TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273284|gb|AF191658.1|AF191
TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273287|gb|AF191661.1|AF191
TATACATAAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273286|gb|AF191660.1|AF191
TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273290|gb|AF191664.1|AF191
TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273289|gb|AF191663.1|AF191
TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273291|gb|AF191665.1|AF191
>>> len(align)
7
We'll now construct a dummy record to append as an example:
>>> from Bio.Seq import Seq
>>> from Bio.SeqRecord import SeqRecord
>>> dummy = SeqRecord(Seq("N"*156), id="dummy")
Now append this to the alignment,
>>> align.append(dummy)
>>> print(align)
Alignment with 8 rows and 156 columns
TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273285|gb|AF191659.1|AF191
TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273284|gb|AF191658.1|AF191
TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273287|gb|AF191661.1|AF191
TATACATAAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273286|gb|AF191660.1|AF191
TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273290|gb|AF191664.1|AF191
TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273289|gb|AF191663.1|AF191
TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273291|gb|AF191665.1|AF191
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN...NNN dummy
>>> len(align)
8
"""
if self._records:
self._append(record, self.get_alignment_length())
else:
self._append(record)
def _append(self, record, expected_length=None):
"""Validate and append a record (PRIVATE)."""
if not isinstance(record, SeqRecord):
raise TypeError("New sequence is not a SeqRecord object")
# Currently the get_alignment_length() call is expensive, so we need
# to avoid calling it repeatedly for __init__ and extend, hence this
# private _append method
if expected_length is not None and len(record) != expected_length:
# TODO - Use the following more helpful error, but update unit tests
# raise ValueError("New sequence is not of length %i"
# % self.get_alignment_length())
raise ValueError("Sequences must all be the same length")
self._records.append(record)
def __add__(self, other):
"""Combine two alignments with the same number of rows by adding them.
If you have two multiple sequence alignments (MSAs), there are two ways to think
about adding them - by row or by column. Using the extend method adds by row.
Using the addition operator adds by column. For example,
>>> from Bio.Seq import Seq
>>> from Bio.SeqRecord import SeqRecord
>>> from Bio.Align import MultipleSeqAlignment
>>> a1 = SeqRecord(Seq("AAAAC"), id="Alpha")
>>> b1 = SeqRecord(Seq("AAA-C"), id="Beta")
>>> c1 = SeqRecord(Seq("AAAAG"), id="Gamma")
>>> a2 = SeqRecord(Seq("GT"), id="Alpha")
>>> b2 = SeqRecord(Seq("GT"), id="Beta")
>>> c2 = SeqRecord(Seq("GT"), id="Gamma")
>>> left = MultipleSeqAlignment([a1, b1, c1],
... annotations={"tool": "demo", "name": "start"},
... column_annotations={"stats": "CCCXC"})
>>> right = MultipleSeqAlignment([a2, b2, c2],
... annotations={"tool": "demo", "name": "end"},
... column_annotations={"stats": "CC"})
Now, let's look at these two alignments:
>>> print(left)
Alignment with 3 rows and 5 columns
AAAAC Alpha
AAA-C Beta
AAAAG Gamma
>>> print(right)
Alignment with 3 rows and 2 columns
GT Alpha
GT Beta
GT Gamma
And add them:
>>> combined = left + right
>>> print(combined)
Alignment with 3 rows and 7 columns
AAAACGT Alpha
AAA-CGT Beta
AAAAGGT Gamma
For this to work, both alignments must have the same number of records (here
they both have 3 rows):
>>> len(left)
3
>>> len(right)
3
>>> len(combined)
3
The individual rows are SeqRecord objects, and these can be added together. Refer
to the SeqRecord documentation for details of how the annotation is handled. This
example is a special case in that both original alignments shared the same names,
meaning when the rows are added they also get the same name.
Any common annotations are preserved, but differing annotation is lost. This is
the same behaviour used in the SeqRecord annotations and is designed to prevent
accidental propagation of inappropriate values:
>>> combined.annotations
{'tool': 'demo'}
Similarly any common per-column-annotations are combined:
>>> combined.column_annotations
{'stats': 'CCCXCCC'}
"""
if not isinstance(other, MultipleSeqAlignment):
raise NotImplementedError
if len(self) != len(other):
raise ValueError(
"When adding two alignments they must have the same length"
" (i.e. same number or rows)"
)
merged = (left + right for left, right in zip(self, other))
# Take any common annotation:
annotations = {}
for k, v in self.annotations.items():
if k in other.annotations and other.annotations[k] == v:
annotations[k] = v
column_annotations = {}
for k, v in self.column_annotations.items():
if k in other.column_annotations:
column_annotations[k] = v + other.column_annotations[k]
return MultipleSeqAlignment(
merged, annotations=annotations, column_annotations=column_annotations
)
def __getitem__(self, index):
"""Access part of the alignment.
Depending on the indices, you can get a SeqRecord object
(representing a single row), a Seq object (for a single columns),
a string (for a single characters) or another alignment
(representing some part or all of the alignment).
align[r,c] gives a single character as a string
align[r] gives a row as a SeqRecord
align[r,:] gives a row as a SeqRecord
align[:,c] gives a column as a Seq
align[:] and align[:,:] give a copy of the alignment
Anything else gives a sub alignment, e.g.
align[0:2] or align[0:2,:] uses only row 0 and 1
align[:,1:3] uses only columns 1 and 2
align[0:2,1:3] uses only rows 0 & 1 and only cols 1 & 2
We'll use the following example alignment here for illustration:
>>> from Bio.Seq import Seq
>>> from Bio.SeqRecord import SeqRecord
>>> from Bio.Align import MultipleSeqAlignment
>>> a = SeqRecord(Seq("AAAACGT"), id="Alpha")
>>> b = SeqRecord(Seq("AAA-CGT"), id="Beta")
>>> c = SeqRecord(Seq("AAAAGGT"), id="Gamma")
>>> d = SeqRecord(Seq("AAAACGT"), id="Delta")
>>> e = SeqRecord(Seq("AAA-GGT"), id="Epsilon")
>>> align = MultipleSeqAlignment([a, b, c, d, e])
You can access a row of the alignment as a SeqRecord using an integer
index (think of the alignment as a list of SeqRecord objects here):
>>> first_record = align[0]
>>> print("%s %s" % (first_record.id, first_record.seq))
Alpha AAAACGT
>>> last_record = align[-1]
>>> print("%s %s" % (last_record.id, last_record.seq))
Epsilon AAA-GGT
You can also access use python's slice notation to create a sub-alignment
containing only some of the SeqRecord objects:
>>> sub_alignment = align[2:5]
>>> print(sub_alignment)
Alignment with 3 rows and 7 columns
AAAAGGT Gamma
AAAACGT Delta
AAA-GGT Epsilon
This includes support for a step, i.e. align[start:end:step], which
can be used to select every second sequence:
>>> sub_alignment = align[::2]
>>> print(sub_alignment)
Alignment with 3 rows and 7 columns
AAAACGT Alpha
AAAAGGT Gamma
AAA-GGT Epsilon
Or to get a copy of the alignment with the rows in reverse order:
>>> rev_alignment = align[::-1]
>>> print(rev_alignment)
Alignment with 5 rows and 7 columns
AAA-GGT Epsilon
AAAACGT Delta
AAAAGGT Gamma
AAA-CGT Beta
AAAACGT Alpha
You can also use two indices to specify both rows and columns. Using simple
integers gives you the entry as a single character string. e.g.
>>> align[3, 4]
'C'
This is equivalent to:
>>> align[3][4]
'C'
or:
>>> align[3].seq[4]
'C'
To get a single column (as a string) use this syntax:
>>> align[:, 4]
'CCGCG'
Or, to get part of a column,
>>> align[1:3, 4]
'CG'
However, in general you get a sub-alignment,
>>> print(align[1:5, 3:6])
Alignment with 4 rows and 3 columns
-CG Beta
AGG Gamma
ACG Delta
-GG Epsilon
This should all seem familiar to anyone who has used the NumPy
array or matrix objects.
"""
if isinstance(index, int):
# e.g. result = align[x]
# Return a SeqRecord
return self._records[index]
elif isinstance(index, slice):
# e.g. sub_align = align[i:j:k]
new = MultipleSeqAlignment(self._records[index])
if self.column_annotations and len(new) == len(self):
# All rows kept (although could have been reversed)
# Preserve the column annotations too,
for k, v in self.column_annotations.items():
new.column_annotations[k] = v
return new
elif len(index) != 2:
raise TypeError("Invalid index type.")
# Handle double indexing
row_index, col_index = index
if isinstance(row_index, int):
# e.g. row_or_part_row = align[6, 1:4], gives a SeqRecord
return self._records[row_index][col_index]
elif isinstance(col_index, int):
# e.g. col_or_part_col = align[1:5, 6], gives a string
return "".join(rec[col_index] for rec in self._records[row_index])
else:
# e.g. sub_align = align[1:4, 5:7], gives another alignment
new = MultipleSeqAlignment(
rec[col_index] for rec in self._records[row_index]
)
if self.column_annotations and len(new) == len(self):
# All rows kept (although could have been reversed)
# Preserve the column annotations too,
for k, v in self.column_annotations.items():
new.column_annotations[k] = v[col_index]
return new
def sort(self, key=None, reverse=False):
"""Sort the rows (SeqRecord objects) of the alignment in place.
This sorts the rows alphabetically using the SeqRecord object id by
default. The sorting can be controlled by supplying a key function
which must map each SeqRecord to a sort value.
This is useful if you want to add two alignments which use the same
record identifiers, but in a different order. For example,
>>> from Bio.Seq import Seq
>>> from Bio.SeqRecord import SeqRecord
>>> from Bio.Align import MultipleSeqAlignment
>>> align1 = MultipleSeqAlignment([
... SeqRecord(Seq("ACGT"), id="Human"),
... SeqRecord(Seq("ACGG"), id="Mouse"),
... SeqRecord(Seq("ACGC"), id="Chicken"),
... ])
>>> align2 = MultipleSeqAlignment([
... SeqRecord(Seq("CGGT"), id="Mouse"),
... SeqRecord(Seq("CGTT"), id="Human"),
... SeqRecord(Seq("CGCT"), id="Chicken"),
... ])
If you simple try and add these without sorting, you get this:
>>> print(align1 + align2)
Alignment with 3 rows and 8 columns
ACGTCGGT <unknown id>
ACGGCGTT <unknown id>
ACGCCGCT Chicken
Consult the SeqRecord documentation which explains why you get a
default value when annotation like the identifier doesn't match up.
However, if we sort the alignments first, then add them we get the
desired result:
>>> align1.sort()
>>> align2.sort()
>>> print(align1 + align2)
Alignment with 3 rows and 8 columns
ACGCCGCT Chicken
ACGTCGTT Human
ACGGCGGT Mouse
As an example using a different sort order, you could sort on the
GC content of each sequence.
>>> from Bio.SeqUtils import gc_fraction
>>> print(align1)
Alignment with 3 rows and 4 columns
ACGC Chicken
ACGT Human
ACGG Mouse
>>> align1.sort(key = lambda record: gc_fraction(record.seq))
>>> print(align1)
Alignment with 3 rows and 4 columns
ACGT Human
ACGC Chicken
ACGG Mouse
There is also a reverse argument, so if you wanted to sort by ID
but backwards:
>>> align1.sort(reverse=True)
>>> print(align1)
Alignment with 3 rows and 4 columns
ACGG Mouse
ACGT Human
ACGC Chicken
"""
if key is None:
self._records.sort(key=lambda r: r.id, reverse=reverse)
else:
self._records.sort(key=key, reverse=reverse)
@property
def substitutions(self):
"""Return an Array with the number of substitutions of letters in the alignment.
As an example, consider a multiple sequence alignment of three DNA sequences:
>>> from Bio.Seq import Seq
>>> from Bio.SeqRecord import SeqRecord
>>> from Bio.Align import MultipleSeqAlignment
>>> seq1 = SeqRecord(Seq("ACGT"), id="seq1")
>>> seq2 = SeqRecord(Seq("A--A"), id="seq2")
>>> seq3 = SeqRecord(Seq("ACGT"), id="seq3")
>>> seq4 = SeqRecord(Seq("TTTC"), id="seq4")
>>> alignment = MultipleSeqAlignment([seq1, seq2, seq3, seq4])
>>> print(alignment)
Alignment with 4 rows and 4 columns
ACGT seq1
A--A seq2
ACGT seq3
TTTC seq4
>>> m = alignment.substitutions
>>> print(m)
A C G T
A 3.0 0.5 0.0 2.5
C 0.5 1.0 0.0 2.0
G 0.0 0.0 1.0 1.0
T 2.5 2.0 1.0 1.0
<BLANKLINE>
Note that the matrix is symmetric, with counts divided equally on both
sides of the diagonal. For example, the total number of substitutions
between A and T in the alignment is 3.5 + 3.5 = 7.
Any weights associated with the sequences are taken into account when
calculating the substitution matrix. For example, given the following
multiple sequence alignment::
GTATC 0.5
AT--C 0.8
CTGTC 1.0
For the first column we have::
('A', 'G') : 0.5 * 0.8 = 0.4
('C', 'G') : 0.5 * 1.0 = 0.5
('A', 'C') : 0.8 * 1.0 = 0.8
"""
letters = set.union(*(set(record.seq) for record in self))
try:
letters.remove("-")
except KeyError:
pass
letters = "".join(sorted(letters))
m = substitution_matrices.Array(letters, dims=2)
for rec_num1, alignment1 in enumerate(self):
seq1 = alignment1.seq
weight1 = alignment1.annotations.get("weight", 1.0)
for rec_num2, alignment2 in enumerate(self):
if rec_num1 == rec_num2:
break
seq2 = alignment2.seq
weight2 = alignment2.annotations.get("weight", 1.0)
for residue1, residue2 in zip(seq1, seq2):
if residue1 == "-":
continue
if residue2 == "-":
continue
m[(residue1, residue2)] += weight1 * weight2
m += m.transpose()
m /= 2.0
return m
class Alignment:
"""Represents a sequence alignment.
An Alignment object has a `.sequences` attribute storing the sequences
(Seq, MutableSeq, SeqRecord, or string objects) that were aligned, as well
as a `.coordinates` attribute storing the sequence coordinates defining the
alignment as a numpy array.
Other commonly used attributes (which may or may not be present) are:
- annotations - A dictionary with annotations describing the
alignment;
- column_annotations - A dictionary with annotations describing each
column in the alignment;
- score - The alignment score.
"""
@classmethod
def infer_coordinates(cls, lines, skipped_columns=None):
"""Infer the coordinates from a printed alignment.
This method is primarily employed in Biopython's alignment parsers,
though it may be useful for other purposes.
For an alignment consisting of N sequences, printed as N lines with
the same number of columns, where gaps are represented by dashes,
this method will calculate the sequence coordinates that define the
alignment. The coordinates are returned as a numpy array of integers,
and can be used to create an Alignment object.
The argument skipped columns should be None (the default) or an empty
list. If skipped_columns is a list, then the indices of any columns in
the alignment with a gap in all lines are appended to skipped_columns.
This is an example for the alignment of three sequences TAGGCATACGTG,
AACGTACGT, and ACGCATACTTG, with gaps in the second and third sequence:
>>> from Bio.Align import Alignment
>>> lines = ["TAGGCATACGTG",
... "AACG--TACGT-",
... "-ACGCATACTTG",
... ]
>>> sequences = [line.replace("-", "") for line in lines]
>>> sequences
['TAGGCATACGTG', 'AACGTACGT', 'ACGCATACTTG']
>>> coordinates = Alignment.infer_coordinates(lines)
>>> coordinates
array([[ 0, 1, 4, 6, 11, 12],
[ 0, 1, 4, 4, 9, 9],
[ 0, 0, 3, 5, 10, 11]])
>>> alignment = Alignment(sequences, coordinates)
"""
n = len(lines)
m = len(lines[0])
for line in lines:
assert m == len(line)
path = []
if m > 0:
indices = [0] * n
current_state = [None] * n
for i in range(m):
next_state = [line[i] != "-" for line in lines]
if not any(next_state):
# skip columns in which all rows have a gap
if skipped_columns is not None:
skipped_columns.append(i)
elif next_state == current_state:
step += 1 # noqa: F821
else:
indices = [
index + step if state else index
for index, state in zip(indices, current_state)
]
path.append(indices)
step = 1
current_state = next_state
indices = [
index + step if state else index
for index, state in zip(indices, current_state)
]
path.append(indices)
coordinates = numpy.array(path).transpose()
return coordinates
def __init__(self, sequences, coordinates=None):
"""Initialize a new Alignment object.
Arguments:
- sequences - A list of the sequences (Seq, MutableSeq, SeqRecord,
or string objects) that were aligned.
- coordinates - The sequence coordinates that define the alignment.
If None (the default value), assume that the sequences
align to each other without any gaps.
"""
self.sequences = sequences
if coordinates is None:
try:
lengths = {len(sequence) for sequence in sequences}
except TypeError:
# this may happen if sequences contain a SeqRecord where
# the seq attribute is None, as neither the sequence nor
# its length are known.
pass
else:
if len(lengths) == 0:
coordinates = numpy.empty((0, 0), dtype=int)
elif len(lengths) == 1:
length = lengths.pop()
coordinates = numpy.array([[0, length]] * len(sequences))
else:
raise ValueError(
"sequences must have the same length if coordinates is None"
)
self.coordinates = coordinates
def __array__(self, dtype=None):
coordinates = self.coordinates.copy()
sequences = list(self.sequences)
steps = numpy.diff(self.coordinates, 1)
aligned = sum(steps != 0, 0) > 1
# True for steps in which at least two sequences align, False if a gap
for i, sequence in enumerate(sequences):
row = steps[i, aligned]
if (row >= 0).all():
pass
elif (row <= 0).all():
sequences[i] = reverse_complement(sequence, inplace=False)
coordinates[i, :] = len(sequence) - coordinates[i, :]
steps[i, :] = -steps[i, :]
else:
raise ValueError(f"Inconsistent steps in row {i}")
gaps = steps.max(0)
if not ((steps == gaps) | (steps <= 0)).all():
raise ValueError("Unequal step sizes in alignment")
n = len(steps)
m = sum(gaps)
data = numpy.empty((n, m), "S1")
for i in range(n):
sequence = sequences[i]
k = coordinates[i, 0]
m = 0
for step, gap in zip(steps[i], gaps):
if step > 0:
j = k + step
n = m + step
try:
subsequence = bytes(sequence[k:j])
except TypeError: # str
subsequence = bytes(sequence[k:j], "UTF8")
data[i, :].data.cast("B")[m:n] = subsequence
k = j
m = n
elif step < 0:
k += step
else: # step == 0
n = m + gap
data[i, m:n] = b"-"
m = n
if dtype is not None:
data = numpy.array(data, dtype)
return data
@property
def target(self):
"""Return self.sequences[0] for a pairwise alignment."""
n = len(self.sequences)
if n != 2:
raise ValueError(
"self.target is defined for pairwise alignments only (found alignment of %d sequences)"
% n
)
return self.sequences[0]
@target.setter
def target(self, value):
"""For a pairwise alignment, set self.sequences[0]."""
n = len(self.sequences)
if n != 2:
raise ValueError(
"self.target is defined for pairwise alignments only (found alignment of %d sequences)"
% n
)
self.sequences[0] = value
@property
def query(self):
"""Return self.sequences[1] for a pairwise alignment."""
n = len(self.sequences)
if n != 2:
raise ValueError(
"self.query is defined for pairwise alignments only (found alignment of %d sequences)"
% n
)
return self.sequences[1]
@query.setter
def query(self, value):
"""For a pairwise alignment, set self.sequences[1]."""
n = len(self.sequences)
if n != 2:
raise ValueError(
"self.query is defined for pairwise alignments only (found alignment of %d sequences)"
% n
)
self.sequences[1] = value
def __eq__(self, other):
"""Check if two Alignment objects specify the same alignment."""
for left, right in zip_longest(self.sequences, other.sequences):
try:
left = left.seq
except AttributeError:
pass
try:
right = right.seq
except AttributeError:
pass
if left != right:
return False
return numpy.array_equal(self.coordinates, other.coordinates)
def __ne__(self, other):
"""Check if two Alignment objects have different alignments."""
for left, right in zip_longest(self.sequences, other.sequences):
try:
left = left.seq
except AttributeError:
pass
try:
right = right.seq
except AttributeError:
pass
if left != right:
return True
return not numpy.array_equal(self.coordinates, other.coordinates)
def __lt__(self, other):
"""Check if self should come before other."""
for left, right in zip_longest(self.sequences, other.sequences):
try:
left = left.seq
except AttributeError:
pass
try:
right = right.seq
except AttributeError:
pass
if left < right:
return True
if left > right:
return False
for left, right in zip(
self.coordinates.transpose(), other.coordinates.transpose()
):
left, right = tuple(left), tuple(right)
if left < right:
return True
if left > right:
return False
return False
def __le__(self, other):
"""Check if self should come before or is equal to other."""
for left, right in zip_longest(self.sequences, other.sequences):
try:
left = left.seq
except AttributeError:
pass
try:
right = right.seq
except AttributeError:
pass
if left < right:
return True
if left > right:
return False
for left, right in zip(
self.coordinates.transpose(), other.coordinates.transpose()
):
left, right = tuple(left), tuple(right)
if left < right:
return True
if left > right:
return False
return True
def __gt__(self, other):
"""Check if self should come after other."""
for left, right in zip_longest(self.sequences, other.sequences):
try:
left = left.seq
except AttributeError:
pass
try:
right = right.seq
except AttributeError:
pass
if left < right:
return False
if left > right:
return True
for left, right in zip(
self.coordinates.transpose(), other.coordinates.transpose()
):
left, right = tuple(left), tuple(right)
if left > right:
return True
if left < right:
return False
return False
def __ge__(self, other):
"""Check if self should come after or is equal to other."""
for left, right in zip_longest(self.sequences, other.sequences):
try:
left = left.seq
except AttributeError:
pass
try:
right = right.seq
except AttributeError:
pass
if left < right:
return False
if left > right:
return True
for left, right in zip(
self.coordinates.transpose(), other.coordinates.transpose()
):
left, right = tuple(left), tuple(right)
if left > right:
return True
if left < right:
return False
return True
@property
def path(self):
"""Return the path through the trace matrix."""
warnings.warn(
"The path attribute is deprecated; please use the coordinates "
"attribute instead. The coordinates attribute is a numpy array "
"containing the same values as the path attributes, after "
"transposition.",
BiopythonDeprecationWarning,
)
return tuple(tuple(row) for row in self.coordinates.transpose())
@path.setter
def path(self, value):
warnings.warn(
"The path attribute is deprecated; please use the coordinates "
"attribute instead. The coordinates attribute is a numpy array "
"containing the same values as the path attributes, after "
"transposition.",
BiopythonDeprecationWarning,
)
self.coordinates = numpy.array(value).transpose()
def _get_row(self, index):
"""Return self[index], where index is an integer (PRIVATE).
This method is called by __getitem__ for invocations of the form
self[row]
where row is an integer.
Return value is a string if the aligned sequences are string, Seq,
or SeqRecord objects, otherwise the return value is a list.
"""
steps = numpy.diff(self.coordinates, 1)
n = len(steps)
if index < 0:
index += n
if index < 0:
raise IndexError("row index out of range")
elif index >= n:
raise IndexError("row index out of range")
aligned = sum(steps != 0, 0) > 1
# True for steps in which at least two sequences align, False if a gap
coordinates = self.coordinates[index, :]
sequence = self.sequences[index]
for i in range(n):
row = steps[i, aligned]
if (row >= 0).all():
pass
elif (row <= 0).all():
steps[i, :] = -steps[i, :]
if i == index:
sequence = reverse_complement(sequence, inplace=False)
coordinates = len(sequence) - coordinates
else:
raise ValueError(f"Inconsistent steps in row {index}")
gaps = steps.max(0)
if not ((steps == gaps) | (steps <= 0)).all():
raise ValueError("Unequal step sizes in alignment")
try:
sequence = sequence.seq # SeqRecord confusion
except AttributeError:
pass
steps = steps[index]
k = coordinates[0]
if isinstance(sequence, (str, Seq)):
line = ""
for step, gap in zip(steps, gaps):
if step > 0:
j = k + step
line += str(sequence[k:j])
k = j
elif step < 0:
k += step
else: # step == 0
line += "-" * gap
else:
line = []
for step, gap in zip(steps, gaps):
if step > 0:
j = k + step
line.extend(sequence[k:j])
k = j
else:
line.extend([None] * gap)
return line
def _get_rows(self, key):
"""Return self[key], where key is a slice object (PRIVATE).
This method is called by __getitem__ for invocations of the form
self[rows]
where rows is a slice object. Return value is an Alignment object.
"""
sequences = self.sequences[key]
coordinates = self.coordinates[key].copy()
alignment = Alignment(sequences, coordinates)
if numpy.array_equal(self.coordinates, coordinates):
try:
alignment.score = self.score
except AttributeError:
pass
try:
alignment.column_annotations = self.column_annotations
except AttributeError:
pass
return alignment
def _get_row_col(self, j, col, steps, gaps, sequence):
"""Return the sequence contents at alignment column j (PRIVATE).
This method is called by __getitem__ for invocations of the form
self[row, col]
where both row and col are integers.
Return value is a string of length 1.
"""
indices = gaps.cumsum()
index = indices.searchsorted(col, side="right")
if steps[index]:
offset = col - indices[index]
j += sum(steps[: index + 1]) + offset
return sequence[j]
else:
return "-"
def _get_row_cols_slice(
self, coordinate, start_index, stop_index, steps, gaps, sequence
):
"""Return the alignment contents of one row and consecutive columns (PRIVATE).
This method is called by __getitem__ for invocations of the form
self[row, cols]
where row is an integer and cols is a slice object with step 1.
Return value is a string if the aligned sequences are string, Seq,
or SeqRecord objects, otherwise the return value is a list.
"""
indices = gaps.cumsum()
i = indices.searchsorted(start_index, side="right")
j = i + indices[i:].searchsorted(stop_index, side="right")
try:
sequence = sequence.seq # stupid SeqRecord
except AttributeError:
pass
if isinstance(sequence, (str, Seq)):
if i == j:
length = stop_index - start_index
if steps[i] == 0:
line = "-" * length
else:
start = coordinate[i] + start_index - indices[i - 1]
stop = start + length
line = str(sequence[start:stop])
else:
length = indices[i] - start_index
if steps[i] == 0:
line = "-" * length
else:
stop = coordinate[i + 1]
start = stop - length
line = str(sequence[start:stop])
i += 1
while i < j:
step = gaps[i]
if steps[i] == 0:
line += "-" * step
else:
start = coordinate[i]
stop = coordinate[i + 1]
line += str(sequence[start:stop])
i += 1
length = stop_index - indices[i - 1]
if length > 0:
if steps[i] == 0:
line += "-" * length
else:
start = coordinate[i]
stop = start + length
line += str(sequence[start:stop])
else:
if i == j:
length = stop_index - start_index
if steps[i] == 0:
line = [None] * length
else:
start = coordinate[i] + start_index - indices[i - 1]
stop = start + length
line = sequence[start:stop]
else:
length = indices[i] - start_index
if steps[i] == 0:
line = [None] * length
else:
stop = coordinate[i + 1]
start = stop - length
line = sequence[start:stop]
i += 1
while i < j:
step = gaps[i]
if steps[i] == 0:
line.extend([None] * step)
else:
start = coordinate[i]
stop = coordinate[i + 1]
line.extend(sequence[start:stop])
i += 1
length = stop_index - indices[i - 1]
if length > 0:
if steps[j] == 0:
line.extend([None] * length)
else:
start = coordinate[i]
stop = start + length
line.extend(sequence[start:stop])
return line
def _get_row_cols_iterable(self, coordinate, cols, gaps, sequence):
"""Return the alignment contents of one row and multiple columns (PRIVATE).
This method is called by __getitem__ for invocations of the form
self[row, cols]
where row is an integer and cols is an iterable of integers.
Return value is a string if the aligned sequences are string, Seq,
or SeqRecord objects, otherwise the return value is a list.
"""
try:
sequence = sequence.seq # stupid SeqRecord
except AttributeError:
pass
if isinstance(sequence, (str, Seq)):
line = ""
start = coordinate[0]
for end, gap in zip(coordinate[1:], gaps):
if start < end:
line += str(sequence[start:end])
else:
line += "-" * gap
start = end
try:
line = "".join(line[col] for col in cols)
except IndexError:
raise
except Exception:
raise TypeError(
"second index must be an integer, slice, or iterable of integers"
) from None
else:
line = []
start = coordinate[0]
for end, gap in zip(coordinate[1:], gaps):
if start < end:
line.extend(sequence[start:end])
else:
line.extend([None] * gap)
start = end
try:
line = [line[col] for col in cols]
except IndexError:
raise
except Exception:
raise TypeError(
"second index must be an integer, slice, or iterable of integers"
) from None
return line
def _get_rows_col(self, coordinates, col, steps, gaps, sequences):
"""Return the alignment contents of multiple rows and one column (PRIVATE).
This method is called by __getitem__ for invocations of the form
self[rows, col]
where rows is a slice object, and col is an integer.
Return value is a string.
"""
indices = gaps.cumsum()
j = indices.searchsorted(col, side="right")
offset = indices[j] - col
line = ""
for sequence, coordinate, step in zip(sequences, coordinates, steps):
if step[j] == 0:
line += "-"
else:
index = coordinate[j] + step[j] - offset
line += sequence[index]
return line
def _get_rows_cols_slice(
self, coordinates, row, start_index, stop_index, steps, gaps
):
"""Return a subalignment of multiple rows and consecutive columns (PRIVATE).
This method is called by __getitem__ for invocations of the form
self[rows, cols]
where rows is an arbitrary slice object, and cols is a slice object
with step 1, allowing the alignment sequences to be reused in the
subalignment. Return value is an Alignment object.
"""
rcs = numpy.any(coordinates != self.coordinates[row], axis=1)
indices = gaps.cumsum()
i = indices.searchsorted(start_index, side="right")
j = i + indices[i:].searchsorted(stop_index, side="left") + 1
offset = steps[:, i] - indices[i] + start_index
coordinates[:, i] += offset * (steps[:, i] > 0)
offset = indices[j - 1] - stop_index
coordinates[:, j] -= offset * (steps[:, j - 1] > 0)
coordinates = coordinates[:, i : j + 1]
sequences = self.sequences[row]
for coordinate, rc, sequence in zip(coordinates, rcs, sequences):
if rc:
# mapped to reverse strand
coordinate[:] = len(sequence) - coordinate[:]
alignment = Alignment(sequences, coordinates)
if numpy.array_equal(self.coordinates, coordinates):
try:
alignment.score = self.score
except AttributeError:
pass
try:
column_annotations = self.column_annotations
except AttributeError:
pass
else:
alignment.column_annotations = {}
for key, value in column_annotations.items():
value = value[start_index:stop_index]
try:
value = value.copy()
except AttributeError:
# immutable tuples like str, tuple
pass
alignment.column_annotations[key] = value
return alignment
def _get_rows_cols_iterable(self, coordinates, col, steps, gaps, sequences):
"""Return a subalignment of multiple rows and columns (PRIVATE).
This method is called by __getitem__ for invocations of the form
self[rows, cols]
where rows is a slice object and cols is an iterable of integers.
This method will create new sequences for use by the subalignment
object. Return value is an Alignment object.
"""
indices = tuple(col)
lines = []
for i, sequence in enumerate(sequences):
try:
s = sequence.seq # stupid SeqRecord
except AttributeError:
s = sequence
line = ""
k = coordinates[i, 0]
for step, gap in zip(steps[i], gaps):
if step:
j = k + step
line += str(s[k:j])
k = j
else:
line += "-" * gap
try:
line = "".join(line[index] for index in indices)
except IndexError:
raise
except Exception:
raise TypeError(
"second index must be an integer, slice, or iterable of integers"
) from None
lines.append(line)
line = line.replace("-", "")
s = s.__class__(line)
try:
sequence.seq # stupid SeqRecord
except AttributeError:
sequence = s
else:
sequence = copy.deepcopy(sequence)
sequence.seq = s
sequences[i] = sequence
coordinates = self.infer_coordinates(lines)
alignment = Alignment(sequences, coordinates)
try:
column_annotations = self.column_annotations
except AttributeError:
pass
else:
alignment.column_annotations = {}
for key, value in column_annotations.items():
values = (value[index] for index in indices)
if isinstance(value, str):
value = "".join(values)
else:
value = value.__class__(values)
alignment.column_annotations[key] = value
return alignment
def __getitem__(self, key):
"""Return self[key].
Indices of the form
self[:, :]
return a copy of the Alignment object;
self[:, i:]
self[:, :j]
self[:, i:j]
self[:, iterable] (where iterable returns integers)
return a new Alignment object spanning the selected columns;
self[k, i]
self[k, i:]
self[k, :j]
self[k, i:j]
self[k, iterable] (where iterable returns integers)
self[k] (equivalent to self[k, :])
return a string with the aligned sequence (including gaps) for the
selected columns, where k = 0 represents the target and k = 1
represents the query sequence; and
self[:, i]
returns a string with the selected column in the alignment.
>>> from Bio.Align import PairwiseAligner
>>> aligner = PairwiseAligner()
>>> alignments = aligner.align("ACCGGTTT", "ACGGGTT")
>>> alignment = alignments[0]
>>> print(alignment)
target 0 ACCGG-TTT 8
0 ||-||-||- 9
query 0 AC-GGGTT- 7
<BLANKLINE>
>>> alignment[0, :]
'ACCGG-TTT'
>>> alignment[1, :]
'AC-GGGTT-'
>>> alignment[0]
'ACCGG-TTT'
>>> alignment[1]
'AC-GGGTT-'
>>> alignment[0, 1:-2]
'CCGG-T'
>>> alignment[1, 1:-2]
'C-GGGT'
>>> alignment[0, (1, 5, 2)]
'C-C'
>>> alignment[1, ::2]
'A-GT-'
>>> alignment[1, range(0, 9, 2)]
'A-GT-'
>>> alignment[:, 0]
'AA'
>>> alignment[:, 5]
'-G'
>>> alignment[:, 1:] # doctest:+ELLIPSIS
<Alignment object (2 rows x 8 columns) at 0x...>
>>> print(alignment[:, 1:])
target 1 CCGG-TTT 8
0 |-||-||- 8
query 1 C-GGGTT- 7
<BLANKLINE>
>>> print(alignment[:, 2:])
target 2 CGG-TTT 8
0 -||-||- 7
query 2 -GGGTT- 7
<BLANKLINE>
>>> print(alignment[:, 3:])
target 3 GG-TTT 8
0 ||-||- 6
query 2 GGGTT- 7
<BLANKLINE>
>>> print(alignment[:, 3:-1])
target 3 GG-TT 7
0 ||-|| 5
query 2 GGGTT 7
<BLANKLINE>
>>> print(alignment[:, ::2])
target 0 ACGTT 5
0 |-||- 5
query 0 A-GT- 3
<BLANKLINE>
>>> print(alignment[:, range(1, 9, 2)])
target 0 CG-T 3
0 ||-| 4
query 0 CGGT 4
<BLANKLINE>
>>> print(alignment[:, (2, 7, 3)])
target 0 CTG 3
0 -|| 3
query 0 -TG 2
<BLANKLINE>
"""
if isinstance(key, numbers.Integral):
return self._get_row(key)
if isinstance(key, slice):
return self._get_rows(key)
sequences = list(self.sequences)
coordinates = self.coordinates.copy()
steps = numpy.diff(coordinates, 1)
aligned = sum(steps != 0, 0) > 1
# True for steps in which at least two sequences align, False if a gap
for i, sequence in enumerate(sequences):
row = steps[i, aligned]
if (row >= 0).all():
pass
elif (row <= 0).all():
steps[i, :] = -steps[i, :]
coordinates[i, :] = len(sequence) - coordinates[i, :]
sequences[i] = reverse_complement(sequence, inplace=False)
try:
sequences[i].id = sequence.id
except AttributeError:
pass
else:
raise ValueError(f"Inconsistent steps in row {i}")
gaps = steps.max(0)
if not ((steps == gaps) | (steps <= 0)).all():
raise ValueError("Unequal step sizes in alignment")
m = sum(gaps)
if isinstance(key, tuple):
try:
row, col = key
except ValueError:
raise ValueError("only tuples of length 2 can be alignment indices")
else:
raise TypeError("alignment indices must be integers, slices, or tuples")
if isinstance(col, numbers.Integral):
if col < 0:
col += m
if col < 0 or col >= m:
raise IndexError(
"column index %d is out of bounds (%d columns)" % (col, m)
)
steps = steps[row]
if isinstance(row, numbers.Integral):
sequence = sequences[row]
if isinstance(col, numbers.Integral):
return self._get_row_col(
coordinates[row, 0], col, steps, gaps, sequence
)
coordinate = coordinates[row, :]
if isinstance(col, slice):
start_index, stop_index, step = col.indices(m)
if start_index < stop_index and step == 1:
return self._get_row_cols_slice(
coordinate, start_index, stop_index, steps, gaps, sequence
)
# make an iterable if step != 1
col = range(start_index, stop_index, step)
return self._get_row_cols_iterable(coordinate, col, gaps, sequence)
if isinstance(row, slice):
sequences = sequences[row]
coordinates = coordinates[row]
if isinstance(col, numbers.Integral):
return self._get_rows_col(coordinates, col, steps, gaps, sequences)
if isinstance(col, slice):
start_index, stop_index, step = col.indices(m)
if start_index < stop_index and step == 1:
return self._get_rows_cols_slice(
coordinates,
row,
start_index,
stop_index,
steps,
gaps,
)
# make an iterable if step != 1
col = range(start_index, stop_index, step)
# try if we can use col as an iterable
return self._get_rows_cols_iterable(
coordinates, col, steps, gaps, sequences
)
raise TypeError("first index must be an integer or slice")
def _convert_sequence_string(self, sequence):
"""Convert given sequence to string using the appropriate method (PRIVATE)."""
if isinstance(sequence, (bytes, bytearray)):
return sequence.decode()
if isinstance(sequence, str):
return sequence
if isinstance(sequence, Seq):
return str(sequence)
try: # check if target is a SeqRecord
sequence = sequence.seq
except AttributeError:
pass
else:
return str(sequence)
try:
view = memoryview(sequence)
except TypeError:
pass
else:
if view.format == "c":
return str(sequence)
return None
def __format__(self, format_spec):
"""Return the alignment as a string in the specified file format.
Wrapper for self.format().
"""
return self.format(format_spec)
def format(self, fmt="", *args, **kwargs):
"""Return the alignment as a string in the specified file format.
Arguments:
- fmt - File format. Acceptable values are an empty string to
create a human-readable representation of the alignment,
or any of the alignment file formats supported by
`Bio.Align` (some have not yet been implemented).
All other arguments are passed to the format-specific writer functions:
- mask - PSL format only. Specify if repeat regions in the target
sequence are masked and should be reported in the
`repMatches` field of the PSL file instead of in the
`matches` field. Acceptable values are
None : no masking (default);
"lower": masking by lower-case characters;
"upper": masking by upper-case characters.
- wildcard - PSL format only. Report alignments to the wildcard
character in the target or query sequence in the
`nCount` field of the PSL file instead of in the
`matches`, `misMatches`, or `repMatches` fields.
Default value is 'N'.
- md - SAM format only. If True, calculate the MD tag from
the alignment and include it in the output. If False
(default), do not include the MD tag in the output.
"""
if fmt == "":
return self._format_pretty()
module = _load(fmt)
try:
writer = module.AlignmentWriter(None, *args, **kwargs)
except AttributeError:
if module.AlignmentIterator.mode == "b":
raise ValueError(f"{fmt} is a binary file format")
raise ValueError(
f"Formatting alignments has not yet been implemented for the {fmt} format"
) from None
return writer.format_alignment(self)
def _format_pretty(self):
"""Return default string representation (PRIVATE).
Helper for self.format().
"""
n = len(self.sequences)
if n == 2:
write_pattern = True
else:
write_pattern = False
steps = numpy.diff(self.coordinates, 1)
aligned = sum(steps != 0, 0) > 1
# True for steps in which at least two sequences align, False if a gap
name_width = 10
names = []
seqs = []
indices = numpy.zeros(self.coordinates.shape, int)
for i, (seq, positions, row) in enumerate(
zip(self.sequences, self.coordinates, indices)
):
try:
name = seq.id
if name is None:
raise AttributeError
except AttributeError:
if n == 2:
if i == 0:
name = "target"
else:
name = "query"
else:
name = ""
else:
name = name[: name_width - 1]
name = name.ljust(name_width)
names.append(name)
try:
seq = seq.seq # SeqRecord confusion
except AttributeError:
pass
start = min(positions)
end = max(positions)
seq = seq[start:end]
aligned_steps = steps[i, aligned]
if len(aligned_steps) == 0:
aligned_steps = steps[i]
if (aligned_steps >= 0).all():
start = min(positions)
row[:] = positions - start
elif (aligned_steps <= 0).all():
steps[i, :] = -steps[i, :]
seq = reverse_complement(seq, inplace=False)
end = max(positions)
row[:] = end - positions
else:
raise ValueError(f"Inconsistent steps in row {i}")
if isinstance(seq, str):
if not seq.isascii():
return self._format_unicode()
elif isinstance(seq, (Seq, MutableSeq)):
try:
seq = bytes(seq)
except UndefinedSequenceError:
s = bytearray(b"?" * (end - start))
for start, end in seq.defined_ranges:
s[start:end] = bytes(seq[start:end])
seq = s
seq = seq.decode()
else:
return self._format_generalized()
seqs.append(seq)
minstep = steps.min(0)
maxstep = steps.max(0)
steps = numpy.where(-minstep > maxstep, minstep, maxstep)
for i, row in enumerate(indices):
row_steps = numpy.diff(row)
row_aligned = (row_steps > 0) & aligned
row_steps = row_steps[row_aligned]
aligned_steps = steps[row_aligned]
if (row_steps == aligned_steps).all():
pass
elif (3 * row_steps == aligned_steps).all():
row[:] *= 3
seqs[i] = " ".join(seqs[i]) + " "
write_pattern = False
else:
raise ValueError("Inconsistent coordinates")
prefix_width = 10
position_width = 10
line_width = 80
lines = []
steps = indices[:, 1:] - indices[:, :-1]
minstep = steps.min(0)
maxstep = steps.max(0)
steps = numpy.where(-minstep > maxstep, minstep, maxstep)
for name, seq, positions, row in zip(names, seqs, self.coordinates, indices):
start = positions[0]
column = line_width
start_index = row[0]
for step, end, end_index in zip(steps, positions[1:], row[1:]):
if step < 0:
if prefix_width + position_width < column:
position_text = str(start)
offset = position_width - len(position_text) - 1
if offset < 0:
lines[-1] += " .." + position_text[-offset + 3 :]
else:
lines[-1] += " " + position_text
column = line_width
start = end
start_index = end_index
continue
elif end_index == start_index:
s = "-" * step
else:
s = seq[start_index:end_index]
while column + len(s) >= line_width:
rest = line_width - column
if rest > 0:
lines[-1] += s[:rest]
s = s[rest:]
if start != end:
if (end_index - start_index) == abs(end - start):
step = rest
else:
# protein to dna alignment;
# integer division, but round up:
step = -(rest // -3)
if start < end:
start += step
else:
start -= step
start_index += rest
line = name
position_text = str(start)
offset = position_width - len(position_text) - 1
if offset < 0:
line += " .." + position_text[-offset + 3 :]
else:
line += " " * offset + position_text
line += " "
lines.append(line)
column = name_width + position_width
lines[-1] += s
if start_index != end_index:
start_index = end_index
start = end
column += len(s)
if write_pattern is True:
dash = "-"
position = 0
m = len(lines) // 2
lines1 = lines[:m]
lines2 = lines[m:]
pattern_lines = []
for line1, line2 in zip(lines1, lines2):
aligned_seq1 = line1[name_width + position_width :]
aligned_seq2 = line2[name_width + position_width :]
pattern = ""
for c1, c2 in zip(aligned_seq1, aligned_seq2):
if c1 == c2:
if c1 == " ":
break
c = "|"
elif c1 == dash or c2 == dash:
c = "-"
else:
c = "."
pattern += c
pattern_line = " %9d %s" % (position, pattern)
pattern_lines.append(pattern_line)
position += len(pattern)
final_position_width = len(str(max(max(self.coordinates[:, -1]), position)))
if column + final_position_width <= line_width:
if prefix_width + position_width < column:
fmt = f" %{final_position_width}d"
lines1[-1] += fmt % self.coordinates[0, -1]
lines2[-1] += fmt % self.coordinates[1, -1]
pattern_lines[-1] += fmt % position
else:
name1, name2 = names
fmt = "%s%9d"
line = name1 + format(self.coordinates[0, -1], "9d")
lines1.append(line)
line = fmt % (" ", position)
pattern_lines.append(line)
line = fmt % (name2, self.coordinates[1, -1])
lines2.append(line)
lines.append("")
return "\n".join(
f"{line1}\n{pattern_line}\n{line2}\n"
for (line1, line2, pattern_line) in zip(lines1, lines2, pattern_lines)
)
else:
m = len(lines) // n
final_position_width = len(str(max(self.coordinates[:, -1])))
if column + final_position_width < line_width:
if prefix_width + position_width < column:
fmt = f" %{final_position_width}d"
for i in range(n):
lines[m - 1 + i * m] += fmt % self.coordinates[i, -1]
blocks = ["\n".join(lines[j::m]) + "\n" for j in range(m)]
else:
blocks = ["\n".join(lines[j::m]) + "\n" for j in range(m)]
lines = []
fmt = "%s%9d"
for i in range(n):
line = names[i] + format(self.coordinates[i, -1], "9d")
lines.append(line)
block = "\n".join(lines) + "\n"
blocks.append(block)
return "\n".join(blocks)
def _format_unicode(self):
"""Return default string representation (PRIVATE).
Helper for self.format().
"""
seqs = []
names = []
coordinates = self.coordinates.copy()
for seq, row in zip(self.sequences, coordinates):
seq = self._convert_sequence_string(seq)
if seq is None:
return self._format_generalized()
if row[0] > row[-1]: # mapped to reverse strand
row[:] = len(seq) - row[:]
seq = reverse_complement(seq, inplace=False)
seqs.append(seq)
try:
name = seq.id
except AttributeError:
if len(self.sequences) == 2:
if len(names) == 0:
name = "target"
else:
name = "query"
else:
name = ""
else:
name = name[:9]
name = name.ljust(10)
names.append(name)
steps = numpy.diff(coordinates, 1).max(0)
aligned_seqs = []
for row, seq in zip(coordinates, seqs):
aligned_seq = ""
start = row[0]
for step, end in zip(steps, row[1:]):
if end == start:
aligned_seq += "-" * step
else:
aligned_seq += seq[start:end]
start = end
aligned_seqs.append(aligned_seq)
if len(seqs) > 2:
return "\n".join(aligned_seqs) + "\n"
aligned_seq1, aligned_seq2 = aligned_seqs
pattern = ""
for c1, c2 in zip(aligned_seq1, aligned_seq2):
if c1 == c2:
c = "|"
elif c1 == "-" or c2 == "-":
c = "-"
else:
c = "."
pattern += c
return f"{aligned_seq1}\n{pattern}\n{aligned_seq2}\n"
def _format_generalized(self):
"""Return generalized string representation (PRIVATE).
Helper for self._format_pretty().
"""
seq1, seq2 = self.sequences
aligned_seq1 = []
aligned_seq2 = []
pattern = []
end1, end2 = self.coordinates[:, 0]
if end1 > 0 or end2 > 0:
if end1 <= end2:
for c2 in seq2[: end2 - end1]:
s2 = str(c2)
s1 = " " * len(s2)
aligned_seq1.append(s1)
aligned_seq2.append(s2)
pattern.append(s1)
else: # end1 > end2
for c1 in seq1[: end1 - end2]:
s1 = str(c1)
s2 = " " * len(s1)
aligned_seq1.append(s1)
aligned_seq2.append(s2)
pattern.append(s2)
start1 = end1
start2 = end2
for end1, end2 in self.coordinates[:, 1:].transpose():
if end1 == start1:
for c2 in seq2[start2:end2]:
s2 = str(c2)
s1 = "-" * len(s2)
aligned_seq1.append(s1)
aligned_seq2.append(s2)
pattern.append(s1)
start2 = end2
elif end2 == start2:
for c1 in seq1[start1:end1]:
s1 = str(c1)
s2 = "-" * len(s1)
aligned_seq1.append(s1)
aligned_seq2.append(s2)
pattern.append(s2)
start1 = end1
else:
t1 = seq1[start1:end1]
t2 = seq2[start2:end2]
if len(t1) != len(t2):
raise ValueError("Unequal step sizes in alignment")
for c1, c2 in zip(t1, t2):
s1 = str(c1)
s2 = str(c2)
m1 = len(s1)
m2 = len(s2)
if c1 == c2:
p = "|"
else:
p = "."
if m1 < m2:
space = (m2 - m1) * " "
s1 += space
pattern.append(p * m1 + space)
elif m1 > m2:
space = (m1 - m2) * " "
s2 += space
pattern.append(p * m2 + space)
else:
pattern.append(p * m1)
aligned_seq1.append(s1)
aligned_seq2.append(s2)
start1 = end1
start2 = end2
aligned_seq1 = " ".join(aligned_seq1)
aligned_seq2 = " ".join(aligned_seq2)
pattern = " ".join(pattern)
return f"{aligned_seq1}\n{pattern}\n{aligned_seq2}\n"
def __str__(self):
"""Return a human-readable string representation of the alignment.
For sequence alignments, each line has at most 80 columns.
The first 10 columns show the (possibly truncated) sequence name,
which may be the id attribute of a SeqRecord, or otherwise 'target'
or 'query' for pairwise alignments.
The next 10 columns show the sequence coordinate, using zero-based
counting as usual in Python.
The remaining 60 columns shown the sequence, using dashes to represent
gaps.
At the end of the alignment, the end coordinates are shown on the right
of the sequence, again in zero-based coordinates.
Pairwise alignments have an additional line between the two sequences
showing whether the sequences match ('|') or mismatch ('.'), or if
there is a gap ('-').
The coordinates shown for this line are the column indices, which can
be useful when extracting a subalignment.
For example,
>>> from Bio.Align import PairwiseAligner
>>> aligner = PairwiseAligner()
>>> seqA = "TTAACCCCATTTG"
>>> seqB = "AAGCCCCTTT"
>>> seqC = "AAAGGGGCTT"
>>> alignments = aligner.align(seqA, seqB)
>>> len(alignments)
1
>>> alignment = alignments[0]
>>> print(alignment)
target 0 TTAA-CCCCATTTG 13
0 --||-||||-|||- 14
query 0 --AAGCCCC-TTT- 10
<BLANKLINE>
Note that seqC is the reverse complement of seqB. Aligning it to the
reverse strand gives the same alignment, but the query coordinates are
switched:
>>> alignments = aligner.align(seqA, seqC, strand="-")
>>> len(alignments)
1
>>> alignment = alignments[0]
>>> print(alignment)
target 0 TTAA-CCCCATTTG 13
0 --||-||||-|||- 14
query 10 --AAGCCCC-TTT- 0
<BLANKLINE>
"""
return self.format()
def __repr__(self):
"""Return a representation of the alignment, including its shape.
The representation cannot be used with eval() to recreate the object,
which is usually possible with simple python objects. For example:
<Alignment object (2 rows x 14 columns) at 0x10403d850>
The hex string is the memory address of the object and can be used to
distinguish different Alignment objects. See help(id) for more
information.
>>> import numpy
>>> from Bio.Align import Alignment
>>> alignment = Alignment(("ACCGT", "ACGT"),
... coordinates = numpy.array([[0, 2, 3, 5],
... [0, 2, 2, 4],
... ]))
>>> print(alignment)
target 0 ACCGT 5
0 ||-|| 5
query 0 AC-GT 4
<BLANKLINE>
>>> alignment # doctest:+ELLIPSIS
<Alignment object (2 rows x 5 columns) at 0x...>
"""
if self.coordinates is None:
return "<%s object at 0x%x>" % (
self.__class__.__name__,
id(self),
)
n, m = self.shape
return "<%s object (%i rows x %i columns) at 0x%x>" % (
self.__class__.__name__,
n,
m,
id(self),
)
def __len__(self):
"""Return the number of sequences in the alignment."""
return len(self.sequences)
@property
def shape(self):
"""Return the shape of the alignment as a tuple of two integer values.
The first integer value is the number of sequences in the alignment as
returned by len(alignment), which is always 2 for pairwise alignments.
The second integer value is the number of columns in the alignment when
it is printed, and is equal to the sum of the number of matches, number
of mismatches, and the total length of gaps in the target and query.
Sequence sections beyond the aligned segment are not included in the
number of columns.
For example,
>>> from Bio import Align
>>> aligner = Align.PairwiseAligner()
>>> aligner.mode = "global"
>>> alignments = aligner.align("GACCTG", "CGATCG")
>>> alignment = alignments[0]
>>> print(alignment)
target 0 -GACCT-G 6
0 -||--|-| 8
query 0 CGA--TCG 6
<BLANKLINE>
>>> len(alignment)
2
>>> alignment.shape
(2, 8)
>>> aligner.mode = "local"
>>> alignments = aligner.align("GACCTG", "CGATCG")
>>> alignment = alignments[0]
>>> print(alignment)
target 0 GACCT-G 6
0 ||--|-| 7
query 1 GA--TCG 6
<BLANKLINE>
>>> len(alignment)
2
>>> alignment.shape
(2, 7)
"""
n = len(self.coordinates)
if n == 0: # no sequences
return (0, 0)
steps = numpy.diff(self.coordinates, 1)
aligned = sum(steps != 0, 0) > 1
# True for steps in which at least two sequences align, False if a gap
for i in range(n):
row = steps[i, aligned]
if (row >= 0).all():
pass
elif (row <= 0).all():
steps[i, :] = -steps[i, :]
else:
raise ValueError(f"Inconsistent steps in row {i}")
gaps = steps.max(0)
if not ((steps == gaps) | (steps <= 0)).all():
raise ValueError("Unequal step sizes in alignment")
m = sum(gaps)
return (n, m)
@property
def aligned(self):
"""Return the indices of subsequences aligned to each other.
This property returns the start and end indices of subsequences
in the target and query sequence that were aligned to each other.
If the alignment between target (t) and query (q) consists of N
chunks, you get two tuples of length N:
(((t_start1, t_end1), (t_start2, t_end2), ..., (t_startN, t_endN)),
((q_start1, q_end1), (q_start2, q_end2), ..., (q_startN, q_endN)))
For example,
>>> from Bio import Align
>>> aligner = Align.PairwiseAligner()
>>> alignments = aligner.align("GAACT", "GAT")
>>> alignment = alignments[0]
>>> print(alignment)
target 0 GAACT 5
0 ||--| 5
query 0 GA--T 3
<BLANKLINE>
>>> alignment.aligned
array([[[0, 2],
[4, 5]],
<BLANKLINE>
[[0, 2],
[2, 3]]])
>>> alignment = alignments[1]
>>> print(alignment)
target 0 GAACT 5
0 |-|-| 5
query 0 G-A-T 3
<BLANKLINE>
>>> alignment.aligned
array([[[0, 1],
[2, 3],
[4, 5]],
<BLANKLINE>
[[0, 1],
[1, 2],
[2, 3]]])
Note that different alignments may have the same subsequences
aligned to each other. In particular, this may occur if alignments
differ from each other in terms of their gap placement only:
>>> aligner.mismatch_score = -10
>>> alignments = aligner.align("AAACAAA", "AAAGAAA")
>>> len(alignments)
2
>>> print(alignments[0])
target 0 AAAC-AAA 7
0 |||--||| 8
query 0 AAA-GAAA 7
<BLANKLINE>
>>> alignments[0].aligned
array([[[0, 3],
[4, 7]],
<BLANKLINE>
[[0, 3],
[4, 7]]])
>>> print(alignments[1])
target 0 AAA-CAAA 7
0 |||--||| 8
query 0 AAAG-AAA 7
<BLANKLINE>
>>> alignments[1].aligned
array([[[0, 3],
[4, 7]],
<BLANKLINE>
[[0, 3],
[4, 7]]])
The property can be used to identify alignments that are identical
to each other in terms of their aligned sequences.
"""
if len(self.sequences) > 2:
raise NotImplementedError(
"aligned is currently implemented for pairwise alignments only"
)
coordinates = self.coordinates.copy()
steps = numpy.diff(coordinates, 1)
aligned = sum(steps != 0, 0) > 1
# True for steps in which at least two sequences align, False if a gap
for i, sequence in enumerate(self.sequences):
row = steps[i, aligned]
if (row >= 0).all():
pass
elif (row <= 0).all():
steps[i, :] = -steps[i, :]
coordinates[i, :] = len(sequence) - coordinates[i, :]
else:
raise ValueError(f"Inconsistent steps in row {i}")
coordinates = coordinates.transpose()
steps = numpy.diff(coordinates, axis=0)
steps = abs(steps).min(1)
indices = numpy.flatnonzero(steps)
starts = coordinates[indices, :]
ends = coordinates[indices + 1, :]
segments = numpy.stack([starts, ends], axis=0).transpose()
steps = numpy.diff(self.coordinates, 1)
for i, sequence in enumerate(self.sequences):
row = steps[i, aligned]
if (row >= 0).all():
pass
elif (row <= 0).all(): # mapped to reverse strand
segments[i, :] = len(sequence) - segments[i, :]
else:
raise ValueError(f"Inconsistent steps in row {i}")
return segments
@property
def indices(self):
"""Return the sequence index of each lettter in the alignment.
This property returns a 2D numpy array with the sequence index of each
letter in the alignment. Gaps are indicated by -1. The array has the
same number of rows and columns as the alignment, as given by
`self.shape`.
For example,
>>> from Bio import Align
>>> aligner = Align.PairwiseAligner()
>>> aligner.mode = "local"
>>> alignments = aligner.align("GAACTGG", "AATG")
>>> alignment = alignments[0]
>>> print(alignment)
target 1 AACTG 6
0 ||-|| 5
query 0 AA-TG 4
<BLANKLINE>
>>> alignment.indices
array([[ 1, 2, 3, 4, 5],
[ 0, 1, -1, 2, 3]])
>>> alignment = alignments[1]
>>> print(alignment)
target 1 AACTGG 7
0 ||-|-| 6
query 0 AA-T-G 4
<BLANKLINE>
>>> alignment.indices
array([[ 1, 2, 3, 4, 5, 6],
[ 0, 1, -1, 2, -1, 3]])
>>> alignments = aligner.align("GAACTGG", "CATT", strand="-")
>>> alignment = alignments[0]
>>> print(alignment)
target 1 AACTG 6
0 ||-|| 5
query 4 AA-TG 0
<BLANKLINE>
>>> alignment.indices
array([[ 1, 2, 3, 4, 5],
[ 3, 2, -1, 1, 0]])
>>> alignment = alignments[1]
>>> print(alignment)
target 1 AACTGG 7
0 ||-|-| 6
query 4 AA-T-G 0
<BLANKLINE>
>>> alignment.indices
array([[ 1, 2, 3, 4, 5, 6],
[ 3, 2, -1, 1, -1, 0]])
"""
a = -numpy.ones(self.shape, int)
n, m = self.coordinates.shape
steps = numpy.diff(self.coordinates, 1)
aligned = sum(steps != 0, 0) > 1
# True for steps in which at least two sequences align, False if a gap
steps = steps[:, aligned]
rcs = numpy.zeros(n, bool)
for i, row in enumerate(steps):
if (row >= 0).all():
rcs[i] = False
elif (row <= 0).all():
rcs[i] = True
else:
raise ValueError(f"Inconsistent steps in row {i}")
i = 0
j = 0
ends = self.coordinates[:, 0]
for k in range(1, m):
starts = ends
ends = self.coordinates[:, k]
for row, start, end, rc in zip(a, starts, ends, rcs):
if rc == False and start < end: # noqa: 712
j = i + end - start
row[i:j] = range(start, end)
elif rc == True and start > end: # noqa: 712
j = i + start - end
row[i:j] = range(start - 1, end - 1, -1)
i = j
return a
@property
def inverse_indices(self):
"""Return the alignment column index for each letter in each sequence.
This property returns a list of 1D numpy arrays; the number of arrays
is equal to the number of aligned sequences, and the length of each
array is equal to the length of the corresponding sequence. For each
letter in each sequence, the array contains the corresponding column
index in the alignment. Letters not included in the alignment are
indicated by -1.
For example,
>>> from Bio import Align
>>> aligner = Align.PairwiseAligner()
>>> aligner.mode = "local"
>>> alignments = aligner.align("GAACTGG", "AATG")
>>> alignment = alignments[0]
>>> print(alignment)
target 1 AACTG 6
0 ||-|| 5
query 0 AA-TG 4
<BLANKLINE>
>>> alignment.inverse_indices
[array([-1, 0, 1, 2, 3, 4, -1]), array([0, 1, 3, 4])]
>>> alignment = alignments[1]
>>> print(alignment)
target 1 AACTGG 7
0 ||-|-| 6
query 0 AA-T-G 4
<BLANKLINE>
>>> alignment.inverse_indices
[array([-1, 0, 1, 2, 3, 4, 5]), array([0, 1, 3, 5])]
>>> alignments = aligner.align("GAACTGG", "CATT", strand="-")
>>> alignment = alignments[0]
>>> print(alignment)
target 1 AACTG 6
0 ||-|| 5
query 4 AA-TG 0
<BLANKLINE>
>>> alignment.inverse_indices
[array([-1, 0, 1, 2, 3, 4, -1]), array([4, 3, 1, 0])]
>>> alignment = alignments[1]
>>> print(alignment)
target 1 AACTGG 7
0 ||-|-| 6
query 4 AA-T-G 0
<BLANKLINE>
>>> alignment.inverse_indices
[array([-1, 0, 1, 2, 3, 4, 5]), array([5, 3, 1, 0])]
"""
a = [-numpy.ones(len(sequence), int) for sequence in self.sequences]
n, m = self.coordinates.shape
steps = numpy.diff(self.coordinates, 1)
aligned = sum(steps != 0, 0) > 1
# True for steps in which at least two sequences align, False if a gap
steps = steps[:, aligned]
rcs = numpy.zeros(n, bool)
for i, row in enumerate(steps):
if (row >= 0).all():
rcs[i] = False
elif (row <= 0).all():
rcs[i] = True
else:
raise ValueError(f"Inconsistent steps in row {i}")
i = 0
j = 0
for k in range(m - 1):
starts = self.coordinates[:, k]
ends = self.coordinates[:, k + 1]
for row, start, end, rc in zip(a, starts, ends, rcs):
if rc == False and start < end: # noqa: 712
j = i + end - start
row[start:end] = range(i, j)
elif rc == True and start > end: # noqa: 712
j = i + start - end
if end > 0:
row[start - 1 : end - 1 : -1] = range(i, j)
elif start > 0:
row[start - 1 :: -1] = range(i, j)
i = j
return a
def sort(self, key=None, reverse=False):
"""Sort the sequences of the alignment in place.
By default, this sorts the sequences alphabetically using their id
attribute if available, or by their sequence contents otherwise.
For example,
>>> from Bio.Align import PairwiseAligner
>>> aligner = PairwiseAligner()
>>> aligner.gap_score = -1
>>> alignments = aligner.align("AATAA", "AAGAA")
>>> len(alignments)
1
>>> alignment = alignments[0]
>>> print(alignment)
target 0 AATAA 5
0 ||.|| 5
query 0 AAGAA 5
<BLANKLINE>
>>> alignment.sort()
>>> print(alignment)
target 0 AAGAA 5
0 ||.|| 5
query 0 AATAA 5
<BLANKLINE>
Alternatively, a key function can be supplied that maps each sequence
to a sort value. For example, you could sort on the GC content of each
sequence.
>>> from Bio.SeqUtils import gc_fraction
>>> alignment.sort(key=gc_fraction)
>>> print(alignment)
target 0 AATAA 5
0 ||.|| 5
query 0 AAGAA 5
<BLANKLINE>
You can reverse the sort order by passing `reverse=True`:
>>> alignment.sort(key=gc_fraction, reverse=True)
>>> print(alignment)
target 0 AAGAA 5
0 ||.|| 5
query 0 AATAA 5
<BLANKLINE>
The sequences are now sorted by decreasing GC content value.
"""
sequences = self.sequences
if key is None:
try:
values = [sequence.id for sequence in sequences]
except AttributeError:
values = sequences
else:
values = [key(sequence) for sequence in sequences]
indices = sorted(range(len(sequences)), key=values.__getitem__, reverse=reverse)
self.sequences = [sequences[index] for index in indices]
self.coordinates = self.coordinates.take(indices, 0)
def map(self, alignment):
r"""Map the alignment to self.target and return the resulting alignment.
Here, self.query and alignment.target are the same sequence.
A typical example is where self is the pairwise alignment between a
chromosome and a transcript, the argument is the pairwise alignment
between the transcript and a sequence (e.g., as obtained by RNA-seq),
and we want to find the alignment of the sequence to the chromosome:
>>> from Bio import Align
>>> aligner = Align.PairwiseAligner()
>>> aligner.mode = 'local'
>>> aligner.open_gap_score = -1
>>> aligner.extend_gap_score = 0
>>> chromosome = "AAAAAAAACCCCCCCAAAAAAAAAAAGGGGGGAAAAAAAA"
>>> transcript = "CCCCCCCGGGGGG"
>>> alignments1 = aligner.align(chromosome, transcript)
>>> len(alignments1)
1
>>> alignment1 = alignments1[0]
>>> print(alignment1)
target 8 CCCCCCCAAAAAAAAAAAGGGGGG 32
0 |||||||-----------|||||| 24
query 0 CCCCCCC-----------GGGGGG 13
<BLANKLINE>
>>> sequence = "CCCCGGGG"
>>> alignments2 = aligner.align(transcript, sequence)
>>> len(alignments2)
1
>>> alignment2 = alignments2[0]
>>> print(alignment2)
target 3 CCCCGGGG 11
0 |||||||| 8
query 0 CCCCGGGG 8
<BLANKLINE>
>>> alignment = alignment1.map(alignment2)
>>> print(alignment)
target 11 CCCCAAAAAAAAAAAGGGG 30
0 ||||-----------|||| 19
query 0 CCCC-----------GGGG 8
<BLANKLINE>
>>> format(alignment, "psl")
'8\t0\t0\t0\t0\t0\t1\t11\t+\tquery\t8\t0\t8\ttarget\t40\t11\t30\t2\t4,4,\t0,4,\t11,26,\n'
Mapping the alignment does not depend on the sequence contents. If we
delete the sequence contents, the same alignment is found in PSL format
(though we obviously lose the ability to print the sequence alignment):
>>> alignment1.target = Seq(None, len(alignment1.target))
>>> alignment1.query = Seq(None, len(alignment1.query))
>>> alignment2.target = Seq(None, len(alignment2.target))
>>> alignment2.query = Seq(None, len(alignment2.query))
>>> alignment = alignment1.map(alignment2)
>>> format(alignment, "psl")
'8\t0\t0\t0\t0\t0\t1\t11\t+\tquery\t8\t0\t8\ttarget\t40\t11\t30\t2\t4,4,\t0,4,\t11,26,\n'
"""
alignment1, alignment2 = self, alignment
if len(alignment1.query) != len(alignment2.target):
raise ValueError(
"length of alignment1 query sequence (%d) != length of alignment2 target sequence (%d)"
% (len(alignment1.query), len(alignment2.target))
)
target = alignment1.target
query = alignment2.query
coordinates1 = alignment1.coordinates
coordinates2 = alignment2.coordinates
n1 = len(alignment1.query)
n2 = len(alignment2.query)
steps1 = numpy.diff(coordinates1, 1)
row = numpy.prod(numpy.sign(steps1), 0)
if (row >= 0).all():
strand1 = "+"
elif (row <= 0).all():
strand1 = "-"
else:
raise ValueError("Inconsistent steps in the first alignment")
steps2 = numpy.diff(coordinates2, 1)
row = numpy.prod(numpy.sign(steps2), 0)
if (row >= 0).all():
strand2 = "+"
elif (row <= 0).all():
strand2 = "-"
else:
raise ValueError("Inconsistent steps in the second alignment")
if strand1 == "+":
if strand2 == "-": # mapped to reverse strand
coordinates2 = coordinates2.copy()
coordinates2[1, :] = n2 - coordinates2[1, :]
else: # mapped to reverse strand
coordinates1 = coordinates1.copy()
coordinates1[1, :] = n1 - coordinates1[1, :]
coordinates2 = coordinates2.copy()
coordinates2[0, :] = n1 - coordinates2[0, ::-1]
if strand2 == "+":
coordinates2[1, :] = n2 - coordinates2[1, ::-1]
else: # mapped to reverse strand
coordinates2[1, :] = coordinates2[1, ::-1]
steps1 = numpy.diff(coordinates1, 1)
gaps1 = steps1.max(0)
if not ((steps1 == gaps1) | (steps1 <= 0)).all():
raise ValueError("Unequal step sizes in first alignment")
steps2 = numpy.diff(coordinates2, 1)
gaps2 = steps2.max(0)
if not ((steps2 == gaps2) | (steps2 <= 0)).all():
raise ValueError("Unequal step sizes in second alignment")
path = []
tEnd, qEnd = sys.maxsize, sys.maxsize
coordinates1 = iter(coordinates1.transpose())
tStart1, qStart1 = sys.maxsize, sys.maxsize
for tEnd1, qEnd1 in coordinates1:
if tStart1 < tEnd1 and qStart1 < qEnd1:
break
tStart1, qStart1 = tEnd1, qEnd1
tStart2, qStart2 = sys.maxsize, sys.maxsize
for tEnd2, qEnd2 in coordinates2.transpose():
while qStart2 < qEnd2 and tStart2 < tEnd2:
while True:
if tStart2 < qStart1:
if tEnd2 < qStart1:
size = tEnd2 - tStart2
else:
size = qStart1 - tStart2
break
elif tStart2 < qEnd1:
offset = tStart2 - qStart1
if tEnd2 > qEnd1:
size = qEnd1 - tStart2
else:
size = tEnd2 - tStart2
qStart = qStart2
tStart = tStart1 + offset
if tStart > tEnd and qStart > qEnd:
# adding a gap both in target and in query;
# add gap to target first:
path.append([tStart, qEnd])
qEnd = qStart2 + size
tEnd = tStart + size
path.append([tStart, qStart])
path.append([tEnd, qEnd])
break
tStart1, qStart1 = sys.maxsize, sys.maxsize
for tEnd1, qEnd1 in coordinates1:
if tStart1 < tEnd1 and qStart1 < qEnd1:
break
tStart1, qStart1 = tEnd1, qEnd1
else:
size = qEnd2 - qStart2
break
qStart2 += size
tStart2 += size
tStart2, qStart2 = tEnd2, qEnd2
coordinates = numpy.array(path).transpose()
if strand1 != strand2:
coordinates[1, :] = n2 - coordinates[1, :]
sequences = [target, query]
alignment = Alignment(sequences, coordinates)
return alignment
@property
def substitutions(self):
"""Return an Array with the number of substitutions of letters in the alignment.
As an example, consider a sequence alignment of two RNA sequences:
>>> from Bio.Align import PairwiseAligner
>>> target = "ATACTTACCTGGCAGGGGAGATACCATGATCACGAAGGTGGTTTTCCCAGGGCGAGGCTTATCCATTGCACTCCGGATGTGCTGACCCCTGCGATTTCCCCAAATGTGGGAAACTCGACTGCATAATTTGTGGTAGTGGGGGACTGCGTTCGCGCTTTCCCCTG" # human spliceosomal small nuclear RNA U1
>>> query = "ATACTTACCTGACAGGGGAGGCACCATGATCACACAGGTGGTCCTCCCAGGGCGAGGCTCTTCCATTGCACTGCGGGAGGGTTGACCCCTGCGATTTCCCCAAATGTGGGAAACTCGACTGTATAATTTGTGGTAGTGGGGGACTGCGTTCGCGCTATCCCCCG" # sea lamprey spliceosomal small RNA U1
>>> aligner = PairwiseAligner()
>>> aligner.gap_score = -10
>>> alignments = aligner.align(target, query)
>>> len(alignments)
1
>>> alignment = alignments[0]
>>> print(alignment)
target 0 ATACTTACCTGGCAGGGGAGATACCATGATCACGAAGGTGGTTTTCCCAGGGCGAGGCTT
0 |||||||||||.||||||||..|||||||||||..|||||||..|||||||||||||||.
query 0 ATACTTACCTGACAGGGGAGGCACCATGATCACACAGGTGGTCCTCCCAGGGCGAGGCTC
<BLANKLINE>
target 60 ATCCATTGCACTCCGGATGTGCTGACCCCTGCGATTTCCCCAAATGTGGGAAACTCGACT
60 .|||||||||||.|||..|.|.||||||||||||||||||||||||||||||||||||||
query 60 TTCCATTGCACTGCGGGAGGGTTGACCCCTGCGATTTCCCCAAATGTGGGAAACTCGACT
<BLANKLINE>
target 120 GCATAATTTGTGGTAGTGGGGGACTGCGTTCGCGCTTTCCCCTG 164
120 |.||||||||||||||||||||||||||||||||||.|||||.| 164
query 120 GTATAATTTGTGGTAGTGGGGGACTGCGTTCGCGCTATCCCCCG 164
<BLANKLINE>
>>> m = alignment.substitutions
>>> print(m)
A C G T
A 28.0 1.0 2.0 1.0
C 0.0 39.0 1.0 2.0
G 2.0 0.0 45.0 0.0
T 2.0 5.0 1.0 35.0
<BLANKLINE>
Note that the matrix is not symmetric: rows correspond to the target
sequence, and columns to the query sequence. For example, the number
of T's in the target sequence that are aligned to a C in the query
sequence is
>>> m['T', 'C']
5.0
and the number of C's in the query sequence tat are aligned to a T in
the query sequence is
>>> m['C', 'T']
2.0
For some applications (for example, to define a scoring matrix from
the substitution matrix), a symmetric matrix may be preferred, which
can be calculated as follows:
>>> m += m.transpose()
>>> m /= 2.0
>>> print(m)
A C G T
A 28.0 0.5 2.0 1.5
C 0.5 39.0 0.5 3.5
G 2.0 0.5 45.0 0.5
T 1.5 3.5 0.5 35.0
<BLANKLINE>
The matrix is now symmetric, with counts divided equally on both sides
of the diagonal:
>>> m['C', 'T']
3.5
>>> m['T', 'C']
3.5
The total number of substitutions between T's and C's in the alignment
is 3.5 + 3.5 = 7.
"""
coordinates = self.coordinates.copy()
sequences = list(self.sequences)
steps = numpy.diff(self.coordinates, 1)
aligned = sum(steps != 0, 0) > 1
# True for steps in which at least two sequences align, False if a gap
for i, sequence in enumerate(sequences):
row = steps[i, aligned]
if (row >= 0).all():
pass
elif (row <= 0).all():
sequences[i] = reverse_complement(sequence, inplace=False)
coordinates[i, :] = len(sequence) - coordinates[i, :]
else:
raise ValueError(f"Inconsistent steps in row {i}")
letters = set()
for sequence in sequences:
try:
s = set(sequence)
except UndefinedSequenceError:
try:
sequence = sequence.seq # SeqRecord confusion
except AttributeError:
pass
for start, end in sequence.defined_ranges:
s = set(sequence[start:end])
letters.update(s)
else:
letters.update(s)
letters = "".join(sorted(letters))
m = substitution_matrices.Array(letters, dims=2)
n = len(sequences)
for i1 in range(n):
sequence1 = sequences[i1]
coordinates1 = coordinates[i1, :]
for i2 in range(i1 + 1, n):
sequence2 = sequences[i2]
coordinates2 = coordinates[i2, :]
start1, start2 = sys.maxsize, sys.maxsize
for end1, end2 in zip(coordinates1, coordinates2):
if start1 < end1 and start2 < end2: # aligned
segment1 = sequence1[start1:end1]
segment2 = sequence2[start2:end2]
if len(segment1) != len(segment2):
raise ValueError("Unequal step sizes in alignment")
for c1, c2 in zip(segment1, segment2):
m[c1, c2] += 1.0
start1, start2 = end1, end2
return m
def counts(self):
"""Return number of identities, mismatches, and gaps, of a pairwise alignment.
>>> aligner = PairwiseAligner(mode='global', match_score=2, mismatch_score=-1)
>>> for alignment in aligner.align("TACCG", "ACG"):
... print("Score = %.1f:" % alignment.score)
... c = alignment.counts() # namedtuple
... print(f"{c.gaps} gaps, {c.identities} identities, {c.mismatches} mismatches")
... print(alignment)
...
Score = 6.0:
2 gaps, 3 identities, 0 mismatches
target 0 TACCG 5
0 -||-| 5
query 0 -AC-G 3
<BLANKLINE>
Score = 6.0:
2 gaps, 3 identities, 0 mismatches
target 0 TACCG 5
0 -|-|| 5
query 0 -A-CG 3
<BLANKLINE>
This classifies each pair of letters in a pairwise alignment into gaps,
perfect matches, or mismatches. It has been defined as a method (not a
property) so that it may in future take optional argument(s) allowing
the behaviour to be customised. These three values are returned as a
namedtuple. This is calculated for all the pairs of sequences in the
alignment.
"""
gaps = identities = mismatches = 0
for i, seq1 in enumerate(self):
for j, seq2 in enumerate(self):
if i == j:
# Don't count seq1 vs seq2 and seq2 vs seq1
break
for a, b in zip(seq1, seq2):
if a == "-" or b == "-":
gaps += 1
elif a == b:
identities += 1
else:
mismatches += 1
return AlignmentCounts(gaps, identities, mismatches)
class PairwiseAlignments:
"""Implements an iterator over pairwise alignments returned by the aligner.
This class also supports indexing, which is fast for increasing indices,
but may be slow for random access of a large number of alignments.
Note that pairwise aligners can return an astronomical number of alignments,
even for relatively short sequences, if they align poorly to each other. We
therefore recommend to first check the number of alignments, accessible as
len(alignments), which can be calculated quickly even if the number of
alignments is very large.
"""
def __init__(self, seqA, seqB, score, paths):
"""Initialize a new PairwiseAlignments object.
Arguments:
- seqA - The first sequence, as a plain string, without gaps.
- seqB - The second sequence, as a plain string, without gaps.
- score - The alignment score.
- paths - An iterator over the paths in the traceback matrix;
each path defines one alignment.
You would normally obtain a PairwiseAlignments object by calling
aligner.align(seqA, seqB), where aligner is a PairwiseAligner object.
"""
self.sequences = [seqA, seqB]
self.score = score
self._paths = paths
self._index = -1
def __len__(self):
"""Return the number of alignments."""
return len(self._paths)
def __getitem__(self, index):
if not isinstance(index, int):
raise TypeError(f"index must be an integer, not {index.__class__.__name__}")
if index < 0:
index += len(self._paths)
if index == self._index:
return self._alignment
if index < self._index:
self._paths.reset()
self._index = -1
while True:
try:
alignment = next(self)
except StopIteration:
raise IndexError("index out of range") from None
if self._index == index:
break
return alignment
def __iter__(self):
self._paths.reset()
self._index = -1
return self
def __next__(self):
path = next(self._paths)
self._index += 1
coordinates = numpy.array(path)
alignment = Alignment(self.sequences, coordinates)
alignment.score = self.score
self._alignment = alignment
return alignment
class PairwiseAligner(_aligners.PairwiseAligner):
"""Performs pairwise sequence alignment using dynamic programming.
This provides functions to get global and local alignments between two
sequences. A global alignment finds the best concordance between all
characters in two sequences. A local alignment finds just the
subsequences that align the best.
To perform a pairwise sequence alignment, first create a PairwiseAligner
object. This object stores the match and mismatch scores, as well as the
gap scores. Typically, match scores are positive, while mismatch scores
and gap scores are negative or zero. By default, the match score is 1,
and the mismatch and gap scores are zero. Based on the values of the gap
scores, a PairwiseAligner object automatically chooses the appropriate
alignment algorithm (the Needleman-Wunsch, Smith-Waterman, Gotoh, or
Waterman-Smith-Beyer global or local alignment algorithm).
Calling the "score" method on the aligner with two sequences as arguments
will calculate the alignment score between the two sequences.
Calling the "align" method on the aligner with two sequences as arguments
will return a generator yielding the alignments between the two
sequences.
Some examples:
>>> from Bio import Align
>>> aligner = Align.PairwiseAligner()
>>> alignments = aligner.align("TACCG", "ACG")
>>> for alignment in sorted(alignments):
... print("Score = %.1f:" % alignment.score)
... print(alignment)
...
Score = 3.0:
target 0 TACCG 5
0 -|-|| 5
query 0 -A-CG 3
<BLANKLINE>
Score = 3.0:
target 0 TACCG 5
0 -||-| 5
query 0 -AC-G 3
<BLANKLINE>
Specify the aligner mode as local to generate local alignments:
>>> aligner.mode = 'local'
>>> alignments = aligner.align("TACCG", "ACG")
>>> for alignment in sorted(alignments):
... print("Score = %.1f:" % alignment.score)
... print(alignment)
...
Score = 3.0:
target 1 ACCG 5
0 |-|| 4
query 0 A-CG 3
<BLANKLINE>
Score = 3.0:
target 1 ACCG 5
0 ||-| 4
query 0 AC-G 3
<BLANKLINE>
Do a global alignment. Identical characters are given 2 points,
1 point is deducted for each non-identical character.
>>> aligner.mode = 'global'
>>> aligner.match_score = 2
>>> aligner.mismatch_score = -1
>>> for alignment in aligner.align("TACCG", "ACG"):
... print("Score = %.1f:" % alignment.score)
... print(alignment)
...
Score = 6.0:
target 0 TACCG 5
0 -||-| 5
query 0 -AC-G 3
<BLANKLINE>
Score = 6.0:
target 0 TACCG 5
0 -|-|| 5
query 0 -A-CG 3
<BLANKLINE>
Same as above, except now 0.5 points are deducted when opening a
gap, and 0.1 points are deducted when extending it.
>>> aligner.open_gap_score = -0.5
>>> aligner.extend_gap_score = -0.1
>>> aligner.target_end_gap_score = 0.0
>>> aligner.query_end_gap_score = 0.0
>>> for alignment in aligner.align("TACCG", "ACG"):
... print("Score = %.1f:" % alignment.score)
... print(alignment)
...
Score = 5.5:
target 0 TACCG 5
0 -|-|| 5
query 0 -A-CG 3
<BLANKLINE>
Score = 5.5:
target 0 TACCG 5
0 -||-| 5
query 0 -AC-G 3
<BLANKLINE>
The alignment function can also use known matrices already included in
Biopython:
>>> from Bio.Align import substitution_matrices
>>> aligner = Align.PairwiseAligner()
>>> aligner.substitution_matrix = substitution_matrices.load("BLOSUM62")
>>> alignments = aligner.align("KEVLA", "EVL")
>>> alignments = list(alignments)
>>> print("Number of alignments: %d" % len(alignments))
Number of alignments: 1
>>> alignment = alignments[0]
>>> print("Score = %.1f" % alignment.score)
Score = 13.0
>>> print(alignment)
target 0 KEVLA 5
0 -|||- 5
query 0 -EVL- 3
<BLANKLINE>
You can also set the value of attributes directly during construction
of the PairwiseAligner object by providing them as keyword arguments:
>>> aligner = Align.PairwiseAligner(mode='global', match_score=2, mismatch_score=-1)
>>> for alignment in aligner.align("TACCG", "ACG"):
... print("Score = %.1f:" % alignment.score)
... print(alignment)
...
Score = 6.0:
target 0 TACCG 5
0 -||-| 5
query 0 -AC-G 3
<BLANKLINE>
Score = 6.0:
target 0 TACCG 5
0 -|-|| 5
query 0 -A-CG 3
<BLANKLINE>
"""
def __init__(self, scoring=None, **kwargs):
"""Initialize a new PairwiseAligner as specified by the keyword arguments.
If scoring is None, use the default scoring scheme match = 1.0,
mismatch = 0.0, gap score = 0.0
If scoring is "blastn", "megablast", or "blastp", use the default
substitution matrix and gap scores for BLASTN, MEGABLAST, or BLASTP,
respectively.
Loops over the remaining keyword arguments and sets them as attributes
on the object.
"""
super().__init__()
if scoring is None:
# use default values:
# match = 1.0
# mismatch = 0.0
# gap_score = 0.0
pass
elif scoring == "blastn":
self.substitution_matrix = substitution_matrices.load("BLASTN")
self.open_gap_score = -7.0
self.extend_gap_score = -2.0
elif scoring == "megablast":
self.substitution_matrix = substitution_matrices.load("MEGABLAST")
self.open_gap_score = -2.5
self.extend_gap_score = -2.5
elif scoring == "blastp":
self.substitution_matrix = substitution_matrices.load("BLASTP")
self.open_gap_score = -12.0
self.extend_gap_score = -1.0
else:
raise ValueError("Unknown scoring scheme '%s'" % scoring)
for name, value in kwargs.items():
setattr(self, name, value)
def __setattr__(self, key, value):
if key not in dir(_aligners.PairwiseAligner):
# To prevent confusion, don't allow users to create new attributes.
# On CPython, __slots__ can be used for this, but currently
# __slots__ does not behave the same way on PyPy at least.
raise AttributeError("'PairwiseAligner' object has no attribute '%s'" % key)
_aligners.PairwiseAligner.__setattr__(self, key, value)
def align(self, seqA, seqB, strand="+"):
"""Return the alignments of two sequences using PairwiseAligner."""
if isinstance(seqA, (Seq, MutableSeq, SeqRecord)):
sA = bytes(seqA)
else:
sA = seqA
if strand == "+":
sB = seqB
else: # strand == "-":
sB = reverse_complement(seqB, inplace=False)
if isinstance(seqB, (Seq, MutableSeq, SeqRecord)):
sB = bytes(sB)
score, paths = _aligners.PairwiseAligner.align(self, sA, sB, strand)
alignments = PairwiseAlignments(seqA, seqB, score, paths)
return alignments
def score(self, seqA, seqB, strand="+"):
"""Return the alignments score of two sequences using PairwiseAligner."""
if isinstance(seqA, (Seq, MutableSeq, SeqRecord)):
seqA = bytes(seqA)
if strand == "-":
seqB = reverse_complement(seqB, inplace=False)
if isinstance(seqB, (Seq, MutableSeq, SeqRecord)):
seqB = bytes(seqB)
return _aligners.PairwiseAligner.score(self, seqA, seqB, strand)
def __getstate__(self):
state = {
"wildcard": self.wildcard,
"target_internal_open_gap_score": self.target_internal_open_gap_score,
"target_internal_extend_gap_score": self.target_internal_extend_gap_score,
"target_left_open_gap_score": self.target_left_open_gap_score,
"target_left_extend_gap_score": self.target_left_extend_gap_score,
"target_right_open_gap_score": self.target_right_open_gap_score,
"target_right_extend_gap_score": self.target_right_extend_gap_score,
"query_internal_open_gap_score": self.query_internal_open_gap_score,
"query_internal_extend_gap_score": self.query_internal_extend_gap_score,
"query_left_open_gap_score": self.query_left_open_gap_score,
"query_left_extend_gap_score": self.query_left_extend_gap_score,
"query_right_open_gap_score": self.query_right_open_gap_score,
"query_right_extend_gap_score": self.query_right_extend_gap_score,
"mode": self.mode,
}
if self.substitution_matrix is None:
state["match_score"] = self.match_score
state["mismatch_score"] = self.mismatch_score
else:
state["substitution_matrix"] = self.substitution_matrix
return state
def __setstate__(self, state):
self.wildcard = state["wildcard"]
self.target_internal_open_gap_score = state["target_internal_open_gap_score"]
self.target_internal_extend_gap_score = state[
"target_internal_extend_gap_score"
]
self.target_left_open_gap_score = state["target_left_open_gap_score"]
self.target_left_extend_gap_score = state["target_left_extend_gap_score"]
self.target_right_open_gap_score = state["target_right_open_gap_score"]
self.target_right_extend_gap_score = state["target_right_extend_gap_score"]
self.query_internal_open_gap_score = state["query_internal_open_gap_score"]
self.query_internal_extend_gap_score = state["query_internal_extend_gap_score"]
self.query_left_open_gap_score = state["query_left_open_gap_score"]
self.query_left_extend_gap_score = state["query_left_extend_gap_score"]
self.query_right_open_gap_score = state["query_right_open_gap_score"]
self.query_right_extend_gap_score = state["query_right_extend_gap_score"]
self.mode = state["mode"]
substitution_matrix = state.get("substitution_matrix")
if substitution_matrix is None:
self.match_score = state["match_score"]
self.mismatch_score = state["mismatch_score"]
else:
self.substitution_matrix = substitution_matrix
class PairwiseAlignment(Alignment):
"""Represents a pairwise sequence alignment.
Internally, the pairwise alignment is stored as the path through
the traceback matrix, i.e. a tuple of pairs of indices corresponding
to the vertices of the path in the traceback matrix.
"""
def __init__(self, target, query, path, score):
"""Initialize a new PairwiseAlignment object.
Arguments:
- target - The first sequence, as a plain string, without gaps.
- query - The second sequence, as a plain string, without gaps.
- path - The path through the traceback matrix, defining an
alignment.
- score - The alignment score.
You would normally obtain a PairwiseAlignment object by iterating
over a PairwiseAlignments object.
"""
warnings.warn(
"The PairwiseAlignment class is deprecated; please use the "
"Alignment class instead. Note that the coordinates attribute of "
"an Alignment object is a numpy array and the transpose of the "
"path attribute of a PairwiseAlignment object.",
BiopythonDeprecationWarning,
)
sequences = [target, query]
coordinates = numpy.array(path).transpose()
super().__init__(sequences, coordinates)
self.score = score
# fmt: off
formats = (
"a2m", # A2M files created by align2model or hmmscore
"bed", # BED (Browser Extensible Data) files
"bigbed", # bigBed format
"bigmaf", # MAF file saved as a bigBed file
"bigpsl", # PSL file saved as a bigBed file
"clustal", # clustal output from CLUSTAL W and other tools.
"emboss", # emboss output from EMBOSS tools such as needle, water
"exonerate", # Exonerate pairwise alignment output
"fasta", # FASTA format with gaps represented by dashes
"hhr", # hhr files generated by HHsearch, HHblits in HH-suite
"maf", # MAF (Multiple Alignment Format) format.
"mauve", # xmfa output from Mauve/ProgressiveMauve
"msf", # MSF format produced by GCG PileUp and LocalPileUp
"nexus", # Nexus file format
"phylip", # Alignment format for input files for PHYLIP tools
"psl", # Pattern Space Layout (PSL) format generated by Blat
"sam", # Sequence Alignment/Map (SAM) format
"stockholm", # Stockholm file format used by PFAM and others
"tabular", # Tabular output from BLAST or FASTA
)
# fmt: on
_modules = {}
def _load(fmt):
fmt = fmt.lower()
try:
return _modules[fmt]
except KeyError:
pass
if fmt not in formats:
raise ValueError("Unknown file format %s" % fmt)
module = importlib.import_module(f"Bio.Align.{fmt}")
_modules[fmt] = module
return module
def write(alignments, target, fmt, *args, **kwargs):
"""Write alignments to a file.
Arguments:
- alignments - List (or iterator) of Alignment objects, or a single
Alignment.
- target - File or file-like object to write to, or filename as string.
- fmt - String describing the file format (case-insensitive).
Note if providing a file or file-like object, your code should close the
target after calling this function, or call .flush(), to ensure the data
gets flushed to disk.
Returns the number of alignments written (as an integer).
"""
if isinstance(alignments, Alignment):
alignments = [alignments]
module = _load(fmt)
try:
writer = module.AlignmentWriter
except AttributeError:
raise ValueError(
f"File writing has not yet been implemented for the {fmt} format"
)
return writer(target, *args, **kwargs).write_file(alignments)
def parse(source, fmt):
"""Parse an alignment file and return an iterator over alignments.
Arguments:
- source - File or file-like object to read from, or filename as string.
- fmt - String describing the file format (case-insensitive).
Typical usage, opening a file to read in, and looping over the aligments:
>>> from Bio import Align
>>> filename = "Exonerate/exn_22_m_ner_cigar.exn"
>>> for alignment in Align.parse(filename, "exonerate"):
... print("Number of sequences in alignment", len(alignment))
... print("Alignment score:", alignment.score)
Number of sequences in alignment 2
Alignment score: 6150.0
Number of sequences in alignment 2
Alignment score: 502.0
Number of sequences in alignment 2
Alignment score: 440.0
For lazy-loading file formats such as bigMaf, for which the file contents
is read on demand only, ensure that the file remains open while extracting
alignment data.
You can use the Bio.Align.read(...) function when the file contains only
one alignment.
"""
module = _load(fmt)
alignments = module.AlignmentIterator(source)
return alignments
def read(handle, fmt):
"""Parse a file containing one alignment, and return it.
Arguments:
- source - File or file-like object to read from, or filename as string.
- fmt - String describing the file format (case-insensitive).
This function is for use parsing alignment files containing exactly one
alignment. For example, reading a Clustal file:
>>> from Bio import Align
>>> alignment = Align.read("Clustalw/opuntia.aln", "clustal")
>>> print("Alignment shape:", alignment.shape)
Alignment shape: (7, 156)
>>> for sequence in alignment.sequences:
... print(sequence.id, len(sequence))
gi|6273285|gb|AF191659.1|AF191 146
gi|6273284|gb|AF191658.1|AF191 148
gi|6273287|gb|AF191661.1|AF191 146
gi|6273286|gb|AF191660.1|AF191 146
gi|6273290|gb|AF191664.1|AF191 150
gi|6273289|gb|AF191663.1|AF191 150
gi|6273291|gb|AF191665.1|AF191 156
If the file contains no records, or more than one record, an exception is
raised. For example:
>>> from Bio import Align
>>> filename = "Exonerate/exn_22_m_ner_cigar.exn"
>>> alignment = Align.read(filename, "exonerate")
Traceback (most recent call last):
...
ValueError: More than one alignment found in file
Use the Bio.Align.parse function if you want to read a file containing
more than one alignment.
"""
alignments = parse(handle, fmt)
try:
alignment = next(alignments)
except StopIteration:
raise ValueError("No alignments found in file") from None
try:
next(alignments)
raise ValueError("More than one alignment found in file")
except StopIteration:
pass
return alignment
if __name__ == "__main__":
from Bio._utils import run_doctest
run_doctest()
|