Spaces:
No application file
No application file
File size: 31,404 Bytes
b7731cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 |
# Copyright 2001, 2003 by Brad Chapman. All rights reserved.
# Revisions copyright 2011 by Peter Cock. All rights reserved.
#
# This file is part of the Biopython distribution and governed by your
# choice of the "Biopython License Agreement" or the "BSD 3-Clause License".
# Please see the LICENSE file that should have been included as part of this
# package.
"""Draw representations of organism chromosomes with added information.
These classes are meant to model the drawing of pictures of chromosomes.
This can be useful for lots of things, including displaying markers on
a chromosome (ie. for genetic mapping) and showing syteny between two
chromosomes.
The structure of these classes is intended to be a Composite, so that
it will be easy to plug in and switch different parts without
breaking the general drawing capabilities of the system. The
relationship between classes is that everything derives from
_ChromosomeComponent, which specifies the overall interface. The parts
then are related so that an Organism contains Chromosomes, and these
Chromosomes contain ChromosomeSegments. This representation differs
from the canonical composite structure in that we don't really have
'leaf' nodes here -- all components can potentially hold sub-components.
Most of the time the ChromosomeSegment class is what you'll want to
customize for specific drawing tasks.
For providing drawing capabilities, these classes use reportlab:
http://www.reportlab.com
This provides nice output in PDF, SVG and postscript. If you have
reportlab's renderPM module installed you can also use PNG etc.
"""
# reportlab
from reportlab.lib.pagesizes import letter
from reportlab.lib.units import inch
from reportlab.lib import colors
from reportlab.pdfbase.pdfmetrics import stringWidth
from reportlab.graphics.shapes import Drawing, String, Line, Rect, Wedge, ArcPath
from reportlab.graphics.widgetbase import Widget
from Bio.Graphics import _write
from Bio.Graphics.GenomeDiagram import _Colors
_color_trans = _Colors.ColorTranslator()
class _ChromosomeComponent(Widget):
"""Base class specifying the interface for a component of the system.
This class should not be instantiated directly, but should be used
from derived classes.
"""
def __init__(self):
"""Initialize a chromosome component.
Attributes:
- _sub_components -- Any components which are contained under
this parent component. This attribute should be accessed through
the add() and remove() functions.
"""
self._sub_components = []
def add(self, component):
"""Add a sub_component to the list of components under this item."""
if not isinstance(component, _ChromosomeComponent):
raise TypeError(f"Expected a _ChromosomeComponent object, got {component}")
self._sub_components.append(component)
def remove(self, component):
"""Remove the specified component from the subcomponents.
Raises a ValueError if the component is not registered as a
sub_component.
"""
try:
self._sub_components.remove(component)
except ValueError:
raise ValueError(
f"Component {component} not found in sub_components."
) from None
def draw(self):
"""Draw the specified component."""
raise AssertionError("Subclasses must implement.")
class Organism(_ChromosomeComponent):
"""Top level class for drawing chromosomes.
This class holds information about an organism and all of its
chromosomes, and provides the top level object which could be used
for drawing a chromosome representation of an organism.
Chromosomes should be added and removed from the Organism via the
add and remove functions.
"""
def __init__(self, output_format="pdf"):
"""Initialize the class."""
_ChromosomeComponent.__init__(self)
# customizable attributes
self.page_size = letter
self.title_size = 20
# Do we need this given we don't draw a legend?
# If so, should be a public API...
self._legend_height = 0 # 2 * inch
self.output_format = output_format
def draw(self, output_file, title):
"""Draw out the information for the Organism.
Arguments:
- output_file -- The name of a file specifying where the
document should be saved, or a handle to be written to.
The output format is set when creating the Organism object.
Alternatively, output_file=None will return the drawing using
the low-level ReportLab objects (for further processing, such
as adding additional graphics, before writing).
- title -- The output title of the produced document.
"""
width, height = self.page_size
cur_drawing = Drawing(width, height)
self._draw_title(cur_drawing, title, width, height)
cur_x_pos = inch * 0.5
if len(self._sub_components) > 0:
x_pos_change = (width - inch) / len(self._sub_components)
# no sub_components
else:
pass
for sub_component in self._sub_components:
# set the drawing location of the chromosome
sub_component.start_x_position = cur_x_pos + 0.05 * x_pos_change
sub_component.end_x_position = cur_x_pos + 0.95 * x_pos_change
sub_component.start_y_position = height - 1.5 * inch
sub_component.end_y_position = self._legend_height + 1 * inch
# do the drawing
sub_component.draw(cur_drawing)
# update the locations for the next chromosome
cur_x_pos += x_pos_change
self._draw_legend(cur_drawing, self._legend_height + 0.5 * inch, width)
if output_file is None:
# Let the user take care of writing to the file...
return cur_drawing
return _write(cur_drawing, output_file, self.output_format)
def _draw_title(self, cur_drawing, title, width, height):
"""Write out the title of the organism figure (PRIVATE)."""
title_string = String(width / 2, height - inch, title)
title_string.fontName = "Helvetica-Bold"
title_string.fontSize = self.title_size
title_string.textAnchor = "middle"
cur_drawing.add(title_string)
def _draw_legend(self, cur_drawing, start_y, width):
"""Draw a legend for the figure (PRIVATE).
Subclasses should implement this (see also self._legend_height) to
provide specialized legends.
"""
pass
class Chromosome(_ChromosomeComponent):
"""Class for drawing a chromosome of an organism.
This organizes the drawing of a single organisms chromosome. This
class can be instantiated directly, but the draw method makes the
most sense to be called in the context of an organism.
"""
def __init__(self, chromosome_name):
"""Initialize a Chromosome for drawing.
Arguments:
- chromosome_name - The label for the chromosome.
Attributes:
- start_x_position, end_x_position - The x positions on the page
where the chromosome should be drawn. This allows multiple
chromosomes to be drawn on a single page.
- start_y_position, end_y_position - The y positions on the page
where the chromosome should be contained.
Configuration Attributes:
- title_size - The size of the chromosome title.
- scale_num - A number of scale the drawing by. This is useful if
you want to draw multiple chromosomes of different sizes at the
same scale. If this is not set, then the chromosome drawing will
be scaled by the number of segments in the chromosome (so each
chromosome will be the exact same final size).
"""
_ChromosomeComponent.__init__(self)
self._name = chromosome_name
self.start_x_position = -1
self.end_x_position = -1
self.start_y_position = -1
self.end_y_position = -1
self.title_size = 20
self.scale_num = None
self.label_size = 6
self.chr_percent = 0.25
self.label_sep_percent = self.chr_percent * 0.5
self._color_labels = False
def subcomponent_size(self):
"""Return the scaled size of all subcomponents of this component."""
total_sub = 0
for sub_component in self._sub_components:
total_sub += sub_component.scale
return total_sub
def draw(self, cur_drawing):
"""Draw a chromosome on the specified template.
Ideally, the x_position and y_*_position attributes should be
set prior to drawing -- otherwise we're going to have some problems.
"""
for position in (
self.start_x_position,
self.end_x_position,
self.start_y_position,
self.end_y_position,
):
assert position != -1, "Need to set drawing coordinates."
# first draw all of the sub-sections of the chromosome -- this
# will actually be the picture of the chromosome
cur_y_pos = self.start_y_position
if self.scale_num:
y_pos_change = (
self.start_y_position * 0.95 - self.end_y_position
) / self.scale_num
elif len(self._sub_components) > 0:
y_pos_change = (
self.start_y_position * 0.95 - self.end_y_position
) / self.subcomponent_size()
# no sub_components to draw
else:
pass
left_labels = []
right_labels = []
for sub_component in self._sub_components:
this_y_pos_change = sub_component.scale * y_pos_change
# set the location of the component to draw
sub_component.start_x_position = self.start_x_position
sub_component.end_x_position = self.end_x_position
sub_component.start_y_position = cur_y_pos
sub_component.end_y_position = cur_y_pos - this_y_pos_change
# draw the sub component
sub_component._left_labels = []
sub_component._right_labels = []
sub_component.draw(cur_drawing)
left_labels += sub_component._left_labels
right_labels += sub_component._right_labels
# update the position for the next component
cur_y_pos -= this_y_pos_change
self._draw_labels(cur_drawing, left_labels, right_labels)
self._draw_label(cur_drawing, self._name)
def _draw_label(self, cur_drawing, label_name):
"""Draw a label for the chromosome (PRIVATE)."""
x_position = 0.5 * (self.start_x_position + self.end_x_position)
y_position = self.end_y_position
label_string = String(x_position, y_position, label_name)
label_string.fontName = "Times-BoldItalic"
label_string.fontSize = self.title_size
label_string.textAnchor = "middle"
cur_drawing.add(label_string)
def _draw_labels(self, cur_drawing, left_labels, right_labels):
"""Layout and draw sub-feature labels for the chromosome (PRIVATE).
Tries to place each label at the same vertical position as the
feature it applies to, but will adjust the positions to avoid or
at least reduce label overlap.
Draws the label text and a coloured line linking it to the
location (i.e. feature) it applies to.
"""
if not self._sub_components:
return
color_label = self._color_labels
segment_width = (self.end_x_position - self.start_x_position) * self.chr_percent
label_sep = (
self.end_x_position - self.start_x_position
) * self.label_sep_percent
segment_x = self.start_x_position + 0.5 * (
self.end_x_position - self.start_x_position - segment_width
)
y_limits = []
for sub_component in self._sub_components:
y_limits.extend(
(sub_component.start_y_position, sub_component.end_y_position)
)
y_min = min(y_limits)
y_max = max(y_limits)
del y_limits
# Now do some label placement magic...
# from reportlab.pdfbase import pdfmetrics
# font = pdfmetrics.getFont('Helvetica')
# h = (font.face.ascent + font.face.descent) * 0.90
h = self.label_size
for x1, x2, labels, anchor in [
(
segment_x,
segment_x - label_sep,
_place_labels(left_labels, y_min, y_max, h),
"end",
),
(
segment_x + segment_width,
segment_x + segment_width + label_sep,
_place_labels(right_labels, y_min, y_max, h),
"start",
),
]:
for (y1, y2, color, back_color, name) in labels:
cur_drawing.add(
Line(x1, y1, x2, y2, strokeColor=color, strokeWidth=0.25)
)
label_string = String(x2, y2, name, textAnchor=anchor)
label_string.fontName = "Helvetica"
label_string.fontSize = h
if color_label:
label_string.fillColor = color
if back_color:
w = stringWidth(name, label_string.fontName, label_string.fontSize)
if x1 > x2:
w = w * -1.0
cur_drawing.add(
Rect(
x2,
y2 - 0.1 * h,
w,
h,
strokeColor=back_color,
fillColor=back_color,
)
)
cur_drawing.add(label_string)
class ChromosomeSegment(_ChromosomeComponent):
"""Draw a segment of a chromosome.
This class provides the important configurable functionality of drawing
a Chromosome. Each segment has some customization available here, or can
be subclassed to define additional functionality. Most of the interesting
drawing stuff is likely to happen at the ChromosomeSegment level.
"""
def __init__(self):
"""Initialize a ChromosomeSegment.
Attributes:
- start_x_position, end_x_position - Defines the x range we have
to draw things in.
- start_y_position, end_y_position - Defines the y range we have
to draw things in.
Configuration Attributes:
- scale - A scaling value for the component. By default this is
set at 1 (ie -- has the same scale as everything else). Higher
values give more size to the component, smaller values give less.
- fill_color - A color to fill in the segment with. Colors are
available in reportlab.lib.colors
- label - A label to place on the chromosome segment. This should
be a text string specifying what is to be included in the label.
- label_size - The size of the label.
- chr_percent - The percentage of area that the chromosome
segment takes up.
"""
_ChromosomeComponent.__init__(self)
self.start_x_position = -1
self.end_x_position = -1
self.start_y_position = -1
self.end_y_position = -1
# --- attributes for configuration
self.scale = 1
self.fill_color = None
self.label = None
self.label_size = 6
self.chr_percent = 0.25
def draw(self, cur_drawing):
"""Draw a chromosome segment.
Before drawing, the range we are drawing in needs to be set.
"""
for position in (
self.start_x_position,
self.end_x_position,
self.start_y_position,
self.end_y_position,
):
assert position != -1, "Need to set drawing coordinates."
self._draw_subcomponents(cur_drawing) # Anything behind
self._draw_segment(cur_drawing)
self._overdraw_subcomponents(cur_drawing) # Anything on top
self._draw_label(cur_drawing)
def _draw_subcomponents(self, cur_drawing):
"""Draw any subcomponents of the chromosome segment (PRIVATE).
This should be overridden in derived classes if there are
subcomponents to be drawn.
"""
pass
def _draw_segment(self, cur_drawing):
"""Draw the current chromosome segment (PRIVATE)."""
# set the coordinates of the segment -- it'll take up the MIDDLE part
# of the space we have.
segment_y = self.end_y_position
segment_width = (self.end_x_position - self.start_x_position) * self.chr_percent
segment_height = self.start_y_position - self.end_y_position
segment_x = self.start_x_position + 0.5 * (
self.end_x_position - self.start_x_position - segment_width
)
# first draw the sides of the segment
right_line = Line(segment_x, segment_y, segment_x, segment_y + segment_height)
left_line = Line(
segment_x + segment_width,
segment_y,
segment_x + segment_width,
segment_y + segment_height,
)
cur_drawing.add(right_line)
cur_drawing.add(left_line)
# now draw the box, if it is filled in
if self.fill_color is not None:
fill_rectangle = Rect(segment_x, segment_y, segment_width, segment_height)
fill_rectangle.fillColor = self.fill_color
fill_rectangle.strokeColor = None
cur_drawing.add(fill_rectangle)
def _overdraw_subcomponents(self, cur_drawing):
"""Draw any subcomponents of the chromosome segment over the main part (PRIVATE).
This should be overridden in derived classes if there are
subcomponents to be drawn.
"""
pass
def _draw_label(self, cur_drawing):
"""Add a label to the chromosome segment (PRIVATE).
The label will be applied to the right of the segment.
This may be overlapped by any sub-feature labels on other segments!
"""
if self.label is not None:
label_x = 0.5 * (self.start_x_position + self.end_x_position) + (
self.chr_percent + 0.05
) * (self.end_x_position - self.start_x_position)
label_y = (
self.start_y_position - self.end_y_position
) / 2 + self.end_y_position
label_string = String(label_x, label_y, self.label)
label_string.fontName = "Helvetica"
label_string.fontSize = self.label_size
cur_drawing.add(label_string)
def _spring_layout(desired, minimum, maximum, gap=0):
"""Try to layout label coordinates or other floats (PRIVATE).
Originally written for the y-axis vertical positioning of labels on a
chromosome diagram (where the minimum gap between y-axis coordinates is
the label height), it could also potentially be used for x-axis placement,
or indeed radial placement for circular chromosomes within GenomeDiagram.
In essence this is an optimisation problem, balancing the desire to have
each label as close as possible to its data point, but also to spread out
the labels to avoid overlaps. This could be described with a cost function
(modelling the label distance from the desired placement, and the inter-
label separations as springs) and solved as a multi-variable minimization
problem - perhaps with NumPy or SciPy.
For now however, the implementation is a somewhat crude ad hoc algorithm.
NOTE - This expects the input data to have been sorted!
"""
count = len(desired)
if count <= 1:
return desired # Easy!
if minimum >= maximum:
raise ValueError(f"Bad min/max {minimum:f} and {maximum:f}")
if min(desired) < minimum or max(desired) > maximum:
raise ValueError(
"Data %f to %f out of bounds (%f to %f)"
% (min(desired), max(desired), minimum, maximum)
)
equal_step = (maximum - minimum) / (count - 1)
if equal_step < gap:
import warnings
from Bio import BiopythonWarning
warnings.warn("Too many labels to avoid overlap", BiopythonWarning)
# Crudest solution
return [minimum + i * equal_step for i in range(count)]
good = True
if gap:
prev = desired[0]
for next in desired[1:]:
if prev - next < gap:
good = False
break
if good:
return desired
span = maximum - minimum
for split in [0.5 * span, span / 3.0, 2 * span / 3.0, 0.25 * span, 0.75 * span]:
midpoint = minimum + split
low = [x for x in desired if x <= midpoint - 0.5 * gap]
high = [x for x in desired if x > midpoint + 0.5 * gap]
if len(low) + len(high) < count:
# Bad split point, points right on boundary
continue
elif not low and len(high) * gap <= (span - split) + 0.5 * gap:
# Give a little of the unused low space to the high points
return _spring_layout(high, midpoint + 0.5 * gap, maximum, gap)
elif not high and len(low) * gap <= split + 0.5 * gap:
# Give a little of the unused highspace to the low points
return _spring_layout(low, minimum, midpoint - 0.5 * gap, gap)
elif (
len(low) * gap <= split - 0.5 * gap
and len(high) * gap <= (span - split) - 0.5 * gap
):
return _spring_layout(
low, minimum, midpoint - 0.5 * gap, gap
) + _spring_layout(high, midpoint + 0.5 * gap, maximum, gap)
# This can be count-productive now we can split out into the telomere or
# spacer-segment's vertical space...
# Try not to spread out as far as the min/max unless needed
low = min(desired)
high = max(desired)
if (high - low) / (count - 1) >= gap:
# Good, we don't need the full range, and can position the
# min and max exactly as well :)
equal_step = (high - low) / (count - 1)
return [low + i * equal_step for i in range(count)]
low = 0.5 * (minimum + min(desired))
high = 0.5 * (max(desired) + maximum)
if (high - low) / (count - 1) >= gap:
# Good, we don't need the full range
equal_step = (high - low) / (count - 1)
return [low + i * equal_step for i in range(count)]
# Crudest solution
return [minimum + i * equal_step for i in range(count)]
# assert False, _spring_layout([0.10,0.12,0.13,0.14,0.5,0.75, 1.0], 0, 1, 0.1)
# assert _spring_layout([0.10,0.12,0.13,0.14,0.5,0.75, 1.0], 0, 1, 0.1) == \
# [0.0, 0.125, 0.25, 0.375, 0.5, 0.75, 1.0]
# assert _spring_layout([0.10,0.12,0.13,0.14,0.5,0.75, 1.0], 0, 1, 0.1) == \
# [0.0, 0.16666666666666666, 0.33333333333333331, 0.5,
# 0.66666666666666663, 0.83333333333333326, 1.0]
def _place_labels(desired_etc, minimum, maximum, gap=0):
# Want a list of lists/tuples for desired_etc
desired_etc.sort()
placed = _spring_layout([row[0] for row in desired_etc], minimum, maximum, gap)
for old, y2 in zip(desired_etc, placed):
# (y1, a, b, c, ..., z) --> (y1, y2, a, b, c, ..., z)
yield (old[0], y2) + tuple(old[1:])
class AnnotatedChromosomeSegment(ChromosomeSegment):
"""Annotated chromosome segment.
This is like the ChromosomeSegment, but accepts a list of features.
"""
def __init__(
self,
bp_length,
features,
default_feature_color=colors.blue,
name_qualifiers=("gene", "label", "name", "locus_tag", "product"),
):
"""Initialize.
The features can either be SeqFeature objects, or tuples of values:
start (int), end (int), strand (+1, -1, O or None), label (string),
ReportLab color (string or object), and optional ReportLab fill color.
Note we require 0 <= start <= end <= bp_length, and within the vertical
space allocated to this segment lines will be places according to the
start/end coordinates (starting from the top).
Positive stand features are drawn on the right, negative on the left,
otherwise all the way across.
We recommend using consistent units for all the segment's scale values
(e.g. their length in base pairs).
When providing features as SeqFeature objects, the default color
is used, unless the feature's qualifiers include an Artemis colour
string (functionality also in GenomeDiagram). The caption also follows
the GenomeDiagram approach and takes the first qualifier from the list
or tuple specified in name_qualifiers.
Note additional attribute label_sep_percent controls the percentage of
area that the chromosome segment takes up, by default half of the
chr_percent attribute (half of 25%, thus 12.5%)
"""
ChromosomeSegment.__init__(self)
self.bp_length = bp_length
self.features = features
self.default_feature_color = default_feature_color
self.name_qualifiers = name_qualifiers
self.label_sep_percent = self.chr_percent * 0.5
def _overdraw_subcomponents(self, cur_drawing):
"""Draw any annotated features on the chromosome segment (PRIVATE).
Assumes _draw_segment already called to fill out the basic shape,
and assmes that uses the same boundaries.
"""
# set the coordinates of the segment -- it'll take up the MIDDLE part
# of the space we have.
segment_y = self.end_y_position
segment_width = (self.end_x_position - self.start_x_position) * self.chr_percent
label_sep = (
self.end_x_position - self.start_x_position
) * self.label_sep_percent
segment_height = self.start_y_position - self.end_y_position
segment_x = self.start_x_position + 0.5 * (
self.end_x_position - self.start_x_position - segment_width
)
left_labels = []
right_labels = []
for f in self.features:
try:
# Assume SeqFeature objects
start = f.location.start
end = f.location.end
strand = f.strand
try:
# Handles Artemis colour integers, HTML colors, etc
color = _color_trans.translate(f.qualifiers["color"][0])
except Exception: # TODO: ValueError?
color = self.default_feature_color
fill_color = color
name = ""
for qualifier in self.name_qualifiers:
if qualifier in f.qualifiers:
name = f.qualifiers[qualifier][0]
break
except AttributeError:
# Assume tuple of ints, string, and color
start, end, strand, name, color = f[:5]
color = _color_trans.translate(color)
if len(f) > 5:
fill_color = _color_trans.translate(f[5])
else:
fill_color = color
assert 0 <= start <= end <= self.bp_length
if strand == +1:
# Right side only
x = segment_x + segment_width * 0.6
w = segment_width * 0.4
elif strand == -1:
# Left side only
x = segment_x
w = segment_width * 0.4
else:
# Both or neither - full width
x = segment_x
w = segment_width
local_scale = segment_height / self.bp_length
fill_rectangle = Rect(
x,
segment_y + segment_height - local_scale * start,
w,
local_scale * (start - end),
)
fill_rectangle.fillColor = fill_color
fill_rectangle.strokeColor = color
cur_drawing.add(fill_rectangle)
if name:
if fill_color == color:
back_color = None
else:
back_color = fill_color
value = (
segment_y + segment_height - local_scale * start,
color,
back_color,
name,
)
if strand == -1:
self._left_labels.append(value)
else:
self._right_labels.append(value)
class TelomereSegment(ChromosomeSegment):
"""A segment that is located at the end of a linear chromosome.
This is just like a regular segment, but it draws the end of a chromosome
which is represented by a half circle. This just overrides the
_draw_segment class of ChromosomeSegment to provide that specialized
drawing.
"""
def __init__(self, inverted=0):
"""Initialize a segment at the end of a chromosome.
See ChromosomeSegment for all of the attributes that can be
customized in a TelomereSegments.
Arguments:
- inverted -- Whether or not the telomere should be inverted
(ie. drawn on the bottom of a chromosome)
"""
ChromosomeSegment.__init__(self)
self._inverted = inverted
def _draw_segment(self, cur_drawing):
"""Draw a half circle representing the end of a linear chromosome (PRIVATE)."""
# set the coordinates of the segment -- it'll take up the MIDDLE part
# of the space we have.
width = (self.end_x_position - self.start_x_position) * self.chr_percent
height = self.start_y_position - self.end_y_position
center_x = 0.5 * (self.end_x_position + self.start_x_position)
start_x = center_x - 0.5 * width
if self._inverted:
center_y = self.start_y_position
start_angle = 180
end_angle = 360
else:
center_y = self.end_y_position
start_angle = 0
end_angle = 180
cap_wedge = Wedge(center_x, center_y, width / 2, start_angle, end_angle, height)
cap_wedge.strokeColor = None
cap_wedge.fillColor = self.fill_color
cur_drawing.add(cap_wedge)
# Now draw an arc for the curved edge of the wedge,
# omitting the flat end.
cap_arc = ArcPath()
cap_arc.addArc(center_x, center_y, width / 2, start_angle, end_angle, height)
cur_drawing.add(cap_arc)
class SpacerSegment(ChromosomeSegment):
"""A segment that is located at the end of a linear chromosome.
Doesn't draw anything, just empty space which can be helpful
for layout purposes (e.g. making room for feature labels).
"""
def draw(self, cur_diagram):
"""Draw nothing to the current diagram (dummy method).
The segment spacer has no actual image in the diagram,
so this method therefore does nothing, but is defined
to match the expected API of the other segment objects.
"""
pass
|