File size: 31,404 Bytes
b7731cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
# Copyright 2001, 2003 by Brad Chapman.  All rights reserved.
# Revisions copyright 2011 by Peter Cock.  All rights reserved.
#
# This file is part of the Biopython distribution and governed by your
# choice of the "Biopython License Agreement" or the "BSD 3-Clause License".
# Please see the LICENSE file that should have been included as part of this
# package.
"""Draw representations of organism chromosomes with added information.

These classes are meant to model the drawing of pictures of chromosomes.
This can be useful for lots of things, including displaying markers on
a chromosome (ie. for genetic mapping) and showing syteny between two
chromosomes.

The structure of these classes is intended to be a Composite, so that
it will be easy to plug in and switch different parts without
breaking the general drawing capabilities of the system. The
relationship between classes is that everything derives from
_ChromosomeComponent, which specifies the overall interface. The parts
then are related so that an Organism contains Chromosomes, and these
Chromosomes contain ChromosomeSegments. This representation differs
from the canonical composite structure in that we don't really have
'leaf' nodes here -- all components can potentially hold sub-components.

Most of the time the ChromosomeSegment class is what you'll want to
customize for specific drawing tasks.

For providing drawing capabilities, these classes use reportlab:

http://www.reportlab.com

This provides nice output in PDF, SVG and postscript.  If you have
reportlab's renderPM module installed you can also use PNG etc.
"""

# reportlab
from reportlab.lib.pagesizes import letter
from reportlab.lib.units import inch
from reportlab.lib import colors
from reportlab.pdfbase.pdfmetrics import stringWidth

from reportlab.graphics.shapes import Drawing, String, Line, Rect, Wedge, ArcPath
from reportlab.graphics.widgetbase import Widget

from Bio.Graphics import _write
from Bio.Graphics.GenomeDiagram import _Colors


_color_trans = _Colors.ColorTranslator()


class _ChromosomeComponent(Widget):
    """Base class specifying the interface for a component of the system.

    This class should not be instantiated directly, but should be used
    from derived classes.
    """

    def __init__(self):
        """Initialize a chromosome component.

        Attributes:
        - _sub_components -- Any components which are contained under
        this parent component. This attribute should be accessed through
        the add() and remove() functions.

        """
        self._sub_components = []

    def add(self, component):
        """Add a sub_component to the list of components under this item."""
        if not isinstance(component, _ChromosomeComponent):
            raise TypeError(f"Expected a _ChromosomeComponent object, got {component}")

        self._sub_components.append(component)

    def remove(self, component):
        """Remove the specified component from the subcomponents.

        Raises a ValueError if the component is not registered as a
        sub_component.
        """
        try:
            self._sub_components.remove(component)
        except ValueError:
            raise ValueError(
                f"Component {component} not found in sub_components."
            ) from None

    def draw(self):
        """Draw the specified component."""
        raise AssertionError("Subclasses must implement.")


class Organism(_ChromosomeComponent):
    """Top level class for drawing chromosomes.

    This class holds information about an organism and all of its
    chromosomes, and provides the top level object which could be used
    for drawing a chromosome representation of an organism.

    Chromosomes should be added and removed from the Organism via the
    add and remove functions.
    """

    def __init__(self, output_format="pdf"):
        """Initialize the class."""
        _ChromosomeComponent.__init__(self)

        # customizable attributes
        self.page_size = letter
        self.title_size = 20

        # Do we need this given we don't draw a legend?
        # If so, should be a public API...
        self._legend_height = 0  # 2 * inch

        self.output_format = output_format

    def draw(self, output_file, title):
        """Draw out the information for the Organism.

        Arguments:
         - output_file -- The name of a file specifying where the
           document should be saved, or a handle to be written to.
           The output format is set when creating the Organism object.
           Alternatively, output_file=None will return the drawing using
           the low-level ReportLab objects (for further processing, such
           as adding additional graphics, before writing).
         - title -- The output title of the produced document.

        """
        width, height = self.page_size
        cur_drawing = Drawing(width, height)

        self._draw_title(cur_drawing, title, width, height)

        cur_x_pos = inch * 0.5
        if len(self._sub_components) > 0:
            x_pos_change = (width - inch) / len(self._sub_components)
        # no sub_components
        else:
            pass

        for sub_component in self._sub_components:
            # set the drawing location of the chromosome
            sub_component.start_x_position = cur_x_pos + 0.05 * x_pos_change
            sub_component.end_x_position = cur_x_pos + 0.95 * x_pos_change
            sub_component.start_y_position = height - 1.5 * inch
            sub_component.end_y_position = self._legend_height + 1 * inch

            # do the drawing
            sub_component.draw(cur_drawing)

            # update the locations for the next chromosome
            cur_x_pos += x_pos_change

        self._draw_legend(cur_drawing, self._legend_height + 0.5 * inch, width)

        if output_file is None:
            # Let the user take care of writing to the file...
            return cur_drawing

        return _write(cur_drawing, output_file, self.output_format)

    def _draw_title(self, cur_drawing, title, width, height):
        """Write out the title of the organism figure (PRIVATE)."""
        title_string = String(width / 2, height - inch, title)
        title_string.fontName = "Helvetica-Bold"
        title_string.fontSize = self.title_size
        title_string.textAnchor = "middle"

        cur_drawing.add(title_string)

    def _draw_legend(self, cur_drawing, start_y, width):
        """Draw a legend for the figure (PRIVATE).

        Subclasses should implement this (see also self._legend_height) to
        provide specialized legends.
        """
        pass


class Chromosome(_ChromosomeComponent):
    """Class for drawing a chromosome of an organism.

    This organizes the drawing of a single organisms chromosome. This
    class can be instantiated directly, but the draw method makes the
    most sense to be called in the context of an organism.
    """

    def __init__(self, chromosome_name):
        """Initialize a Chromosome for drawing.

        Arguments:
         - chromosome_name - The label for the chromosome.

        Attributes:
         - start_x_position, end_x_position - The x positions on the page
           where the chromosome should be drawn. This allows multiple
           chromosomes to be drawn on a single page.
         - start_y_position, end_y_position - The y positions on the page
           where the chromosome should be contained.

        Configuration Attributes:
         - title_size - The size of the chromosome title.
         - scale_num - A number of scale the drawing by. This is useful if
           you want to draw multiple chromosomes of different sizes at the
           same scale. If this is not set, then the chromosome drawing will
           be scaled by the number of segments in the chromosome (so each
           chromosome will be the exact same final size).

        """
        _ChromosomeComponent.__init__(self)

        self._name = chromosome_name

        self.start_x_position = -1
        self.end_x_position = -1
        self.start_y_position = -1
        self.end_y_position = -1

        self.title_size = 20
        self.scale_num = None

        self.label_size = 6
        self.chr_percent = 0.25
        self.label_sep_percent = self.chr_percent * 0.5
        self._color_labels = False

    def subcomponent_size(self):
        """Return the scaled size of all subcomponents of this component."""
        total_sub = 0
        for sub_component in self._sub_components:
            total_sub += sub_component.scale

        return total_sub

    def draw(self, cur_drawing):
        """Draw a chromosome on the specified template.

        Ideally, the x_position and y_*_position attributes should be
        set prior to drawing -- otherwise we're going to have some problems.
        """
        for position in (
            self.start_x_position,
            self.end_x_position,
            self.start_y_position,
            self.end_y_position,
        ):
            assert position != -1, "Need to set drawing coordinates."

        # first draw all of the sub-sections of the chromosome -- this
        # will actually be the picture of the chromosome
        cur_y_pos = self.start_y_position
        if self.scale_num:
            y_pos_change = (
                self.start_y_position * 0.95 - self.end_y_position
            ) / self.scale_num
        elif len(self._sub_components) > 0:
            y_pos_change = (
                self.start_y_position * 0.95 - self.end_y_position
            ) / self.subcomponent_size()
        # no sub_components to draw
        else:
            pass

        left_labels = []
        right_labels = []
        for sub_component in self._sub_components:
            this_y_pos_change = sub_component.scale * y_pos_change

            # set the location of the component to draw
            sub_component.start_x_position = self.start_x_position
            sub_component.end_x_position = self.end_x_position
            sub_component.start_y_position = cur_y_pos
            sub_component.end_y_position = cur_y_pos - this_y_pos_change

            # draw the sub component
            sub_component._left_labels = []
            sub_component._right_labels = []
            sub_component.draw(cur_drawing)
            left_labels += sub_component._left_labels
            right_labels += sub_component._right_labels

            # update the position for the next component
            cur_y_pos -= this_y_pos_change

        self._draw_labels(cur_drawing, left_labels, right_labels)
        self._draw_label(cur_drawing, self._name)

    def _draw_label(self, cur_drawing, label_name):
        """Draw a label for the chromosome (PRIVATE)."""
        x_position = 0.5 * (self.start_x_position + self.end_x_position)
        y_position = self.end_y_position

        label_string = String(x_position, y_position, label_name)
        label_string.fontName = "Times-BoldItalic"
        label_string.fontSize = self.title_size
        label_string.textAnchor = "middle"

        cur_drawing.add(label_string)

    def _draw_labels(self, cur_drawing, left_labels, right_labels):
        """Layout and draw sub-feature labels for the chromosome (PRIVATE).

        Tries to place each label at the same vertical position as the
        feature it applies to, but will adjust the positions to avoid or
        at least reduce label overlap.

        Draws the label text and a coloured line linking it to the
        location (i.e. feature) it applies to.
        """
        if not self._sub_components:
            return
        color_label = self._color_labels

        segment_width = (self.end_x_position - self.start_x_position) * self.chr_percent
        label_sep = (
            self.end_x_position - self.start_x_position
        ) * self.label_sep_percent
        segment_x = self.start_x_position + 0.5 * (
            self.end_x_position - self.start_x_position - segment_width
        )

        y_limits = []
        for sub_component in self._sub_components:
            y_limits.extend(
                (sub_component.start_y_position, sub_component.end_y_position)
            )
        y_min = min(y_limits)
        y_max = max(y_limits)
        del y_limits
        # Now do some label placement magic...
        # from reportlab.pdfbase import pdfmetrics
        # font = pdfmetrics.getFont('Helvetica')
        # h = (font.face.ascent + font.face.descent) * 0.90
        h = self.label_size
        for x1, x2, labels, anchor in [
            (
                segment_x,
                segment_x - label_sep,
                _place_labels(left_labels, y_min, y_max, h),
                "end",
            ),
            (
                segment_x + segment_width,
                segment_x + segment_width + label_sep,
                _place_labels(right_labels, y_min, y_max, h),
                "start",
            ),
        ]:
            for (y1, y2, color, back_color, name) in labels:
                cur_drawing.add(
                    Line(x1, y1, x2, y2, strokeColor=color, strokeWidth=0.25)
                )
                label_string = String(x2, y2, name, textAnchor=anchor)
                label_string.fontName = "Helvetica"
                label_string.fontSize = h
                if color_label:
                    label_string.fillColor = color
                if back_color:
                    w = stringWidth(name, label_string.fontName, label_string.fontSize)
                    if x1 > x2:
                        w = w * -1.0
                    cur_drawing.add(
                        Rect(
                            x2,
                            y2 - 0.1 * h,
                            w,
                            h,
                            strokeColor=back_color,
                            fillColor=back_color,
                        )
                    )
                cur_drawing.add(label_string)


class ChromosomeSegment(_ChromosomeComponent):
    """Draw a segment of a chromosome.

    This class provides the important configurable functionality of drawing
    a Chromosome. Each segment has some customization available here, or can
    be subclassed to define additional functionality. Most of the interesting
    drawing stuff is likely to happen at the ChromosomeSegment level.
    """

    def __init__(self):
        """Initialize a ChromosomeSegment.

        Attributes:
         - start_x_position, end_x_position - Defines the x range we have
           to draw things in.
         - start_y_position, end_y_position - Defines the y range we have
           to draw things in.

        Configuration Attributes:
         - scale - A scaling value for the component. By default this is
           set at 1 (ie -- has the same scale as everything else). Higher
           values give more size to the component, smaller values give less.
         - fill_color - A color to fill in the segment with. Colors are
           available in reportlab.lib.colors
         - label - A label to place on the chromosome segment. This should
           be a text string specifying what is to be included in the label.
         - label_size - The size of the label.
         - chr_percent - The percentage of area that the chromosome
           segment takes up.

        """
        _ChromosomeComponent.__init__(self)

        self.start_x_position = -1
        self.end_x_position = -1
        self.start_y_position = -1
        self.end_y_position = -1

        # --- attributes for configuration
        self.scale = 1
        self.fill_color = None
        self.label = None
        self.label_size = 6
        self.chr_percent = 0.25

    def draw(self, cur_drawing):
        """Draw a chromosome segment.

        Before drawing, the range we are drawing in needs to be set.
        """
        for position in (
            self.start_x_position,
            self.end_x_position,
            self.start_y_position,
            self.end_y_position,
        ):
            assert position != -1, "Need to set drawing coordinates."

        self._draw_subcomponents(cur_drawing)  # Anything behind
        self._draw_segment(cur_drawing)
        self._overdraw_subcomponents(cur_drawing)  # Anything on top
        self._draw_label(cur_drawing)

    def _draw_subcomponents(self, cur_drawing):
        """Draw any subcomponents of the chromosome segment (PRIVATE).

        This should be overridden in derived classes if there are
        subcomponents to be drawn.
        """
        pass

    def _draw_segment(self, cur_drawing):
        """Draw the current chromosome segment (PRIVATE)."""
        # set the coordinates of the segment -- it'll take up the MIDDLE part
        # of the space we have.
        segment_y = self.end_y_position
        segment_width = (self.end_x_position - self.start_x_position) * self.chr_percent
        segment_height = self.start_y_position - self.end_y_position
        segment_x = self.start_x_position + 0.5 * (
            self.end_x_position - self.start_x_position - segment_width
        )

        # first draw the sides of the segment
        right_line = Line(segment_x, segment_y, segment_x, segment_y + segment_height)
        left_line = Line(
            segment_x + segment_width,
            segment_y,
            segment_x + segment_width,
            segment_y + segment_height,
        )

        cur_drawing.add(right_line)
        cur_drawing.add(left_line)

        # now draw the box, if it is filled in
        if self.fill_color is not None:
            fill_rectangle = Rect(segment_x, segment_y, segment_width, segment_height)
            fill_rectangle.fillColor = self.fill_color
            fill_rectangle.strokeColor = None

            cur_drawing.add(fill_rectangle)

    def _overdraw_subcomponents(self, cur_drawing):
        """Draw any subcomponents of the chromosome segment over the main part (PRIVATE).

        This should be overridden in derived classes if there are
        subcomponents to be drawn.
        """
        pass

    def _draw_label(self, cur_drawing):
        """Add a label to the chromosome segment (PRIVATE).

        The label will be applied to the right of the segment.

        This may be overlapped by any sub-feature labels on other segments!
        """
        if self.label is not None:

            label_x = 0.5 * (self.start_x_position + self.end_x_position) + (
                self.chr_percent + 0.05
            ) * (self.end_x_position - self.start_x_position)
            label_y = (
                self.start_y_position - self.end_y_position
            ) / 2 + self.end_y_position

            label_string = String(label_x, label_y, self.label)
            label_string.fontName = "Helvetica"
            label_string.fontSize = self.label_size

            cur_drawing.add(label_string)


def _spring_layout(desired, minimum, maximum, gap=0):
    """Try to layout label coordinates or other floats (PRIVATE).

    Originally written for the y-axis vertical positioning of labels on a
    chromosome diagram (where the minimum gap between y-axis coordinates is
    the label height), it could also potentially be used for x-axis placement,
    or indeed radial placement for circular chromosomes within GenomeDiagram.

    In essence this is an optimisation problem, balancing the desire to have
    each label as close as possible to its data point, but also to spread out
    the labels to avoid overlaps. This could be described with a cost function
    (modelling the label distance from the desired placement, and the inter-
    label separations as springs) and solved as a multi-variable minimization
    problem - perhaps with NumPy or SciPy.

    For now however, the implementation is a somewhat crude ad hoc algorithm.

    NOTE - This expects the input data to have been sorted!
    """
    count = len(desired)
    if count <= 1:
        return desired  # Easy!
    if minimum >= maximum:
        raise ValueError(f"Bad min/max {minimum:f} and {maximum:f}")
    if min(desired) < minimum or max(desired) > maximum:
        raise ValueError(
            "Data %f to %f out of bounds (%f to %f)"
            % (min(desired), max(desired), minimum, maximum)
        )
    equal_step = (maximum - minimum) / (count - 1)

    if equal_step < gap:
        import warnings
        from Bio import BiopythonWarning

        warnings.warn("Too many labels to avoid overlap", BiopythonWarning)
        # Crudest solution
        return [minimum + i * equal_step for i in range(count)]

    good = True
    if gap:
        prev = desired[0]
        for next in desired[1:]:
            if prev - next < gap:
                good = False
                break
    if good:
        return desired

    span = maximum - minimum
    for split in [0.5 * span, span / 3.0, 2 * span / 3.0, 0.25 * span, 0.75 * span]:
        midpoint = minimum + split
        low = [x for x in desired if x <= midpoint - 0.5 * gap]
        high = [x for x in desired if x > midpoint + 0.5 * gap]
        if len(low) + len(high) < count:
            # Bad split point, points right on boundary
            continue
        elif not low and len(high) * gap <= (span - split) + 0.5 * gap:
            # Give a little of the unused low space to the high points
            return _spring_layout(high, midpoint + 0.5 * gap, maximum, gap)
        elif not high and len(low) * gap <= split + 0.5 * gap:
            # Give a little of the unused highspace to the low points
            return _spring_layout(low, minimum, midpoint - 0.5 * gap, gap)
        elif (
            len(low) * gap <= split - 0.5 * gap
            and len(high) * gap <= (span - split) - 0.5 * gap
        ):
            return _spring_layout(
                low, minimum, midpoint - 0.5 * gap, gap
            ) + _spring_layout(high, midpoint + 0.5 * gap, maximum, gap)

    # This can be count-productive now we can split out into the telomere or
    # spacer-segment's vertical space...
    # Try not to spread out as far as the min/max unless needed
    low = min(desired)
    high = max(desired)
    if (high - low) / (count - 1) >= gap:
        # Good, we don't need the full range, and can position the
        # min and max exactly as well :)
        equal_step = (high - low) / (count - 1)
        return [low + i * equal_step for i in range(count)]

    low = 0.5 * (minimum + min(desired))
    high = 0.5 * (max(desired) + maximum)
    if (high - low) / (count - 1) >= gap:
        # Good, we don't need the full range
        equal_step = (high - low) / (count - 1)
        return [low + i * equal_step for i in range(count)]

    # Crudest solution
    return [minimum + i * equal_step for i in range(count)]


# assert False, _spring_layout([0.10,0.12,0.13,0.14,0.5,0.75, 1.0], 0, 1, 0.1)
# assert _spring_layout([0.10,0.12,0.13,0.14,0.5,0.75, 1.0], 0, 1, 0.1) == \
#     [0.0, 0.125, 0.25, 0.375, 0.5, 0.75, 1.0]
# assert _spring_layout([0.10,0.12,0.13,0.14,0.5,0.75, 1.0], 0, 1, 0.1) == \
#     [0.0, 0.16666666666666666, 0.33333333333333331, 0.5,
#      0.66666666666666663, 0.83333333333333326, 1.0]


def _place_labels(desired_etc, minimum, maximum, gap=0):
    # Want a list of lists/tuples for desired_etc
    desired_etc.sort()
    placed = _spring_layout([row[0] for row in desired_etc], minimum, maximum, gap)
    for old, y2 in zip(desired_etc, placed):
        # (y1, a, b, c, ..., z) --> (y1, y2, a, b, c, ..., z)
        yield (old[0], y2) + tuple(old[1:])


class AnnotatedChromosomeSegment(ChromosomeSegment):
    """Annotated chromosome segment.

    This is like the ChromosomeSegment, but accepts a list of features.
    """

    def __init__(
        self,
        bp_length,
        features,
        default_feature_color=colors.blue,
        name_qualifiers=("gene", "label", "name", "locus_tag", "product"),
    ):
        """Initialize.

        The features can either be SeqFeature objects, or tuples of values:
        start (int), end (int), strand (+1, -1, O or None), label (string),
        ReportLab color (string or object), and optional ReportLab fill color.

        Note we require 0 <= start <= end <= bp_length, and within the vertical
        space allocated to this segment lines will be places according to the
        start/end coordinates (starting from the top).

        Positive stand features are drawn on the right, negative on the left,
        otherwise all the way across.

        We recommend using consistent units for all the segment's scale values
        (e.g. their length in base pairs).

        When providing features as SeqFeature objects, the default color
        is used, unless the feature's qualifiers include an Artemis colour
        string (functionality also in GenomeDiagram). The caption also follows
        the GenomeDiagram approach and takes the first qualifier from the list
        or tuple specified in name_qualifiers.

        Note additional attribute label_sep_percent controls the percentage of
        area that the chromosome segment takes up, by default half of the
        chr_percent attribute (half of 25%, thus 12.5%)

        """
        ChromosomeSegment.__init__(self)
        self.bp_length = bp_length
        self.features = features
        self.default_feature_color = default_feature_color
        self.name_qualifiers = name_qualifiers
        self.label_sep_percent = self.chr_percent * 0.5

    def _overdraw_subcomponents(self, cur_drawing):
        """Draw any annotated features on the chromosome segment (PRIVATE).

        Assumes _draw_segment already called to fill out the basic shape,
        and assmes that uses the same boundaries.
        """
        # set the coordinates of the segment -- it'll take up the MIDDLE part
        # of the space we have.
        segment_y = self.end_y_position
        segment_width = (self.end_x_position - self.start_x_position) * self.chr_percent
        label_sep = (
            self.end_x_position - self.start_x_position
        ) * self.label_sep_percent
        segment_height = self.start_y_position - self.end_y_position
        segment_x = self.start_x_position + 0.5 * (
            self.end_x_position - self.start_x_position - segment_width
        )

        left_labels = []
        right_labels = []
        for f in self.features:
            try:
                # Assume SeqFeature objects
                start = f.location.start
                end = f.location.end
                strand = f.strand
                try:
                    # Handles Artemis colour integers, HTML colors, etc
                    color = _color_trans.translate(f.qualifiers["color"][0])
                except Exception:  # TODO: ValueError?
                    color = self.default_feature_color
                fill_color = color
                name = ""
                for qualifier in self.name_qualifiers:
                    if qualifier in f.qualifiers:
                        name = f.qualifiers[qualifier][0]
                        break
            except AttributeError:
                # Assume tuple of ints, string, and color
                start, end, strand, name, color = f[:5]
                color = _color_trans.translate(color)
                if len(f) > 5:
                    fill_color = _color_trans.translate(f[5])
                else:
                    fill_color = color
            assert 0 <= start <= end <= self.bp_length
            if strand == +1:
                # Right side only
                x = segment_x + segment_width * 0.6
                w = segment_width * 0.4
            elif strand == -1:
                # Left side only
                x = segment_x
                w = segment_width * 0.4
            else:
                # Both or neither - full width
                x = segment_x
                w = segment_width
            local_scale = segment_height / self.bp_length
            fill_rectangle = Rect(
                x,
                segment_y + segment_height - local_scale * start,
                w,
                local_scale * (start - end),
            )
            fill_rectangle.fillColor = fill_color
            fill_rectangle.strokeColor = color
            cur_drawing.add(fill_rectangle)
            if name:
                if fill_color == color:
                    back_color = None
                else:
                    back_color = fill_color
                value = (
                    segment_y + segment_height - local_scale * start,
                    color,
                    back_color,
                    name,
                )
                if strand == -1:
                    self._left_labels.append(value)
                else:
                    self._right_labels.append(value)


class TelomereSegment(ChromosomeSegment):
    """A segment that is located at the end of a linear chromosome.

    This is just like a regular segment, but it draws the end of a chromosome
    which is represented by a half circle. This just overrides the
    _draw_segment class of ChromosomeSegment to provide that specialized
    drawing.
    """

    def __init__(self, inverted=0):
        """Initialize a segment at the end of a chromosome.

        See ChromosomeSegment for all of the attributes that can be
        customized in a TelomereSegments.

        Arguments:
         - inverted -- Whether or not the telomere should be inverted
           (ie. drawn on the bottom of a chromosome)

        """
        ChromosomeSegment.__init__(self)

        self._inverted = inverted

    def _draw_segment(self, cur_drawing):
        """Draw a half circle representing the end of a linear chromosome (PRIVATE)."""
        # set the coordinates of the segment -- it'll take up the MIDDLE part
        # of the space we have.
        width = (self.end_x_position - self.start_x_position) * self.chr_percent
        height = self.start_y_position - self.end_y_position
        center_x = 0.5 * (self.end_x_position + self.start_x_position)
        start_x = center_x - 0.5 * width
        if self._inverted:
            center_y = self.start_y_position
            start_angle = 180
            end_angle = 360
        else:
            center_y = self.end_y_position
            start_angle = 0
            end_angle = 180

        cap_wedge = Wedge(center_x, center_y, width / 2, start_angle, end_angle, height)
        cap_wedge.strokeColor = None
        cap_wedge.fillColor = self.fill_color
        cur_drawing.add(cap_wedge)

        # Now draw an arc for the curved edge of the wedge,
        # omitting the flat end.
        cap_arc = ArcPath()
        cap_arc.addArc(center_x, center_y, width / 2, start_angle, end_angle, height)
        cur_drawing.add(cap_arc)


class SpacerSegment(ChromosomeSegment):
    """A segment that is located at the end of a linear chromosome.

    Doesn't draw anything, just empty space which can be helpful
    for layout purposes (e.g. making room for feature labels).
    """

    def draw(self, cur_diagram):
        """Draw nothing to the current diagram (dummy method).

        The segment spacer has no actual image in the diagram,
        so this method therefore does nothing, but is defined
        to match the expected API of the other segment objects.
        """
        pass