Spaces:
No application file
No application file
File size: 68,538 Bytes
b7731cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 |
# Copyright 2003-2008 by Leighton Pritchard. All rights reserved.
# Revisions copyright 2008-2017 by Peter Cock.
#
# This file is part of the Biopython distribution and governed by your
# choice of the "Biopython License Agreement" or the "BSD 3-Clause License".
# Please see the LICENSE file that should have been included as part of this
# package.
#
# Contact: Leighton Pritchard, The James Hutton Institute,
# Invergowrie, Dundee, Scotland, DD2 5DA, UK
# [email protected]
################################################################################
"""CircularDrawer module for GenomeDiagram."""
# ReportLab imports
from reportlab.graphics.shapes import Drawing, String, Group, Line, Circle, Polygon
from reportlab.lib import colors
from reportlab.graphics.shapes import ArcPath
# GenomeDiagram imports
from ._AbstractDrawer import AbstractDrawer, draw_polygon, intermediate_points
from ._AbstractDrawer import _stroke_and_fill_colors
from ._FeatureSet import FeatureSet
from ._GraphSet import GraphSet
from math import pi, cos, sin
class CircularDrawer(AbstractDrawer):
"""Object for drawing circular diagrams.
Attributes:
- tracklines Boolean for whether to draw lines dilineating tracks
- pagesize Tuple describing the size of the page in pixels
- x0 Float X co-ord for leftmost point of drawable area
- xlim Float X co-ord for rightmost point of drawable area
- y0 Float Y co-ord for lowest point of drawable area
- ylim Float Y co-ord for topmost point of drawable area
- pagewidth Float pixel width of drawable area
- pageheight Float pixel height of drawable area
- xcenter Float X co-ord of center of drawable area
- ycenter Float Y co-ord of center of drawable area
- start Int, base to start drawing from
- end Int, base to stop drawing at
- length Size of sequence to be drawn
- track_size Float (0->1) the proportion of the track height to draw in
- drawing Drawing canvas
- drawn_tracks List of ints denoting which tracks are to be drawn
- current_track_level Int denoting which track is currently being drawn
- track_offsets Dictionary of number of pixels that each track top,
center and bottom is offset from the base of a fragment, keyed by track
- sweep Float (0->1) the proportion of the circle circumference to
use for the diagram
- cross_track_links List of tuples each with four entries (track A,
feature A, track B, feature B) to be linked.
"""
def __init__(
self,
parent=None,
pagesize="A3",
orientation="landscape",
x=0.05,
y=0.05,
xl=None,
xr=None,
yt=None,
yb=None,
start=None,
end=None,
tracklines=0,
track_size=0.75,
circular=1,
circle_core=0.0,
cross_track_links=None,
):
"""Create CircularDrawer object.
Arguments:
- parent Diagram object containing the data that the drawer
draws
- pagesize String describing the ISO size of the image, or a tuple
of pixels
- orientation String describing the required orientation of the
final drawing ('landscape' or 'portrait')
- x Float (0->1) describing the relative size of the X
margins to the page
- y Float (0->1) describing the relative size of the Y
margins to the page
- xl Float (0->1) describing the relative size of the left X
margin to the page (overrides x)
- xl Float (0->1) describing the relative size of the left X
margin to the page (overrides x)
- xr Float (0->1) describing the relative size of the right X
margin to the page (overrides x)
- yt Float (0->1) describing the relative size of the top Y
margin to the page (overrides y)
- yb Float (0->1) describing the relative size of the lower Y
margin to the page (overrides y)
- start Int, the position to begin drawing the diagram at
- end Int, the position to stop drawing the diagram at
- tracklines Boolean flag to show (or not) lines delineating tracks
on the diagram
- track_size The proportion of the available track height that
should be taken up in drawing
- circular Boolean flaw to show whether the passed sequence is
circular or not
- circle_core The proportion of the available radius to leave
empty at the center of a circular diagram (0 to 1).
- cross_track_links List of tuples each with four entries (track A,
feature A, track B, feature B) to be linked.
"""
# Use the superclass' instantiation method
AbstractDrawer.__init__(
self,
parent,
pagesize,
orientation,
x,
y,
xl,
xr,
yt,
yb,
start,
end,
tracklines,
cross_track_links,
)
# Useful measurements on the page
self.track_size = track_size
self.circle_core = circle_core
# Determine proportion of circumference around which information will be drawn
if not circular:
self.sweep = 0.9
else:
self.sweep = 1.0
def set_track_heights(self):
"""Initialize track heights.
Since tracks may not be of identical heights, the bottom and top
radius for each track is stored in a dictionary - self.track_radii,
keyed by track number
"""
bot_track = min(min(self.drawn_tracks), 1)
top_track = max(self.drawn_tracks) # The 'highest' track to draw
trackunit_sum = 0 # Total number of 'units' taken up by all tracks
trackunits = {} # Start and & units for each track keyed by track number
heightholder = 0 # placeholder variable
for track in range(bot_track, top_track + 1): # track numbers to 'draw'
try:
trackheight = self._parent[track].height # Get track height
except Exception: # TODO: ValueError? IndexError?
trackheight = 1
trackunit_sum += trackheight # increment total track unit height
trackunits[track] = (heightholder, heightholder + trackheight)
heightholder += trackheight # move to next height
max_radius = 0.5 * min(self.pagewidth, self.pageheight)
trackunit_height = max_radius * (1 - self.circle_core) / trackunit_sum
track_core = max_radius * self.circle_core
# Calculate top and bottom radii for each track
self.track_radii = {} # The inner, outer and center radii for each track
track_crop = (
trackunit_height * (1 - self.track_size) / 2.0
) # 'step back' in pixels
for track in trackunits:
top = trackunits[track][1] * trackunit_height - track_crop + track_core
btm = trackunits[track][0] * trackunit_height + track_crop + track_core
ctr = btm + (top - btm) / 2.0
self.track_radii[track] = (btm, ctr, top)
def draw(self):
"""Draw a circular diagram of the stored data."""
# Instantiate the drawing canvas
self.drawing = Drawing(self.pagesize[0], self.pagesize[1])
feature_elements = [] # holds feature elements
feature_labels = [] # holds feature labels
greytrack_bgs = [] # holds track background
greytrack_labels = [] # holds track foreground labels
scale_axes = [] # holds scale axes
scale_labels = [] # holds scale axis labels
# Get tracks to be drawn and set track sizes
self.drawn_tracks = self._parent.get_drawn_levels()
self.set_track_heights()
# Go through each track in the parent (if it is to be drawn) one by
# one and collate the data as drawing elements
for track_level in self._parent.get_drawn_levels():
self.current_track_level = track_level
track = self._parent[track_level]
gbgs, glabels = self.draw_greytrack(track) # Greytracks
greytrack_bgs.append(gbgs)
greytrack_labels.append(glabels)
features, flabels = self.draw_track(track) # Features and graphs
feature_elements.append(features)
feature_labels.append(flabels)
if track.scale:
axes, slabels = self.draw_scale(track) # Scale axes
scale_axes.append(axes)
scale_labels.append(slabels)
feature_cross_links = []
for cross_link_obj in self.cross_track_links:
cross_link_elements = self.draw_cross_link(cross_link_obj)
if cross_link_elements:
feature_cross_links.append(cross_link_elements)
# Groups listed in order of addition to page (from back to front)
# Draw track backgrounds
# Draw feature cross track links
# Draw features and graphs
# Draw scale axes
# Draw scale labels
# Draw feature labels
# Draw track labels
element_groups = [
greytrack_bgs,
feature_cross_links,
feature_elements,
scale_axes,
scale_labels,
feature_labels,
greytrack_labels,
]
for element_group in element_groups:
for element_list in element_group:
[self.drawing.add(element) for element in element_list]
if self.tracklines:
# Draw test tracks over top of diagram
self.draw_test_tracks()
def draw_track(self, track):
"""Return list of track elements and list of track labels."""
track_elements = [] # Holds elements for features and graphs
track_labels = [] # Holds labels for features and graphs
# Distribution dictionary for dealing with different set types
set_methods = {FeatureSet: self.draw_feature_set, GraphSet: self.draw_graph_set}
for set in track.get_sets(): # Draw the feature or graph sets
elements, labels = set_methods[set.__class__](set)
track_elements += elements
track_labels += labels
return track_elements, track_labels
def draw_feature_set(self, set):
"""Return list of feature elements and list of labels for them."""
# print('draw feature set')
feature_elements = [] # Holds diagram elements belonging to the features
label_elements = [] # Holds diagram elements belonging to feature labels
# Collect all the elements for the feature set
for feature in set.get_features():
if self.is_in_bounds(feature.start) or self.is_in_bounds(feature.end):
features, labels = self.draw_feature(feature)
feature_elements += features
label_elements += labels
return feature_elements, label_elements
def draw_feature(self, feature):
"""Return list of feature elements and list of labels for them."""
feature_elements = [] # Holds drawable elements for a single feature
label_elements = [] # Holds labels for a single feature
if feature.hide: # Don't show feature: return early
return feature_elements, label_elements
start, end = self._current_track_start_end()
# A single feature may be split into subfeatures, so loop over them
for locstart, locend in feature.locations:
if locend < start:
continue
locstart = max(locstart, start)
if end < locstart:
continue
locend = min(locend, end)
# Get sigil for the feature/ each subfeature
feature_sigil, label = self.get_feature_sigil(feature, locstart, locend)
feature_elements.append(feature_sigil)
if label is not None: # If there's a label
label_elements.append(label)
return feature_elements, label_elements
def get_feature_sigil(self, feature, locstart, locend, **kwargs):
"""Return graphics for feature, and any required label for it.
Arguments:
- feature Feature object
- locstart The start position of the feature
- locend The end position of the feature
"""
# Establish the coordinates for the sigil
btm, ctr, top = self.track_radii[self.current_track_level]
startangle, startcos, startsin = self.canvas_angle(locstart)
endangle, endcos, endsin = self.canvas_angle(locend)
midangle, midcos, midsin = self.canvas_angle((locend + locstart) / 2)
# Distribution dictionary for various ways of drawing the feature
# Each method takes the inner and outer radii, the start and end angle
# subtended at the diagram center, and the color as arguments
draw_methods = {
"BOX": self._draw_sigil_box,
"OCTO": self._draw_sigil_cut_corner_box,
"JAGGY": self._draw_sigil_jaggy,
"ARROW": self._draw_sigil_arrow,
"BIGARROW": self._draw_sigil_big_arrow,
}
# Get sigil for the feature, location dependent on the feature strand
method = draw_methods[feature.sigil]
kwargs["head_length_ratio"] = feature.arrowhead_length
kwargs["shaft_height_ratio"] = feature.arrowshaft_height
# Support for clickable links... needs ReportLab 2.4 or later
# which added support for links in SVG output.
if hasattr(feature, "url"):
kwargs["hrefURL"] = feature.url
kwargs["hrefTitle"] = feature.name
sigil = method(
btm,
ctr,
top,
startangle,
endangle,
feature.strand,
color=feature.color,
border=feature.border,
**kwargs,
)
if feature.label: # Feature needs a label
# The spaces are a hack to force a little space between the label
# and the edge of the feature
label = String(
0,
0,
f" {feature.name.strip()} ",
fontName=feature.label_font,
fontSize=feature.label_size,
fillColor=feature.label_color,
)
labelgroup = Group(label)
if feature.label_strand:
strand = feature.label_strand
else:
strand = feature.strand
if feature.label_position in ("start", "5'", "left"):
# Position the label at the feature's start
if strand != -1:
label_angle = startangle + 0.5 * pi # Make text radial
sinval, cosval = startsin, startcos
else:
label_angle = endangle + 0.5 * pi # Make text radial
sinval, cosval = endsin, endcos
elif feature.label_position in ("middle", "center", "centre"):
# Position the label at the feature's midpoint
label_angle = midangle + 0.5 * pi # Make text radial
sinval, cosval = midsin, midcos
elif feature.label_position in ("end", "3'", "right"):
# Position the label at the feature's end
if strand != -1:
label_angle = endangle + 0.5 * pi # Make text radial
sinval, cosval = endsin, endcos
else:
label_angle = startangle + 0.5 * pi # Make text radial
sinval, cosval = startsin, startcos
elif startangle < pi:
# Default to placing the label the bottom of the feature
# as drawn on the page, meaning feature end on left half
label_angle = endangle + 0.5 * pi # Make text radial
sinval, cosval = endsin, endcos
else:
# Default to placing the label on the bottom of the feature,
# which means the feature end when on right hand half
label_angle = startangle + 0.5 * pi # Make text radial
sinval, cosval = startsin, startcos
if strand != -1:
# Feature label on top
radius = top
if startangle < pi: # Turn text round
label_angle -= pi
else:
labelgroup.contents[0].textAnchor = "end"
else:
# Feature label on bottom
radius = btm
if startangle < pi: # Turn text round and anchor end
label_angle -= pi
labelgroup.contents[0].textAnchor = "end"
x_pos = self.xcenter + radius * sinval
y_pos = self.ycenter + radius * cosval
coslabel = cos(label_angle)
sinlabel = sin(label_angle)
labelgroup.transform = (
coslabel,
-sinlabel,
sinlabel,
coslabel,
x_pos,
y_pos,
)
else:
# No label required
labelgroup = None
# if locstart > locend:
# print(locstart, locend, feature.strand, sigil, feature.name)
# print(locstart, locend, feature.name)
return sigil, labelgroup
def draw_cross_link(self, cross_link):
"""Draw a cross-link between features."""
startA = cross_link.startA
startB = cross_link.startB
endA = cross_link.endA
endB = cross_link.endB
if not self.is_in_bounds(startA) and not self.is_in_bounds(endA):
return None
if not self.is_in_bounds(startB) and not self.is_in_bounds(endB):
return None
if startA < self.start:
startA = self.start
if startB < self.start:
startB = self.start
if self.end < endA:
endA = self.end
if self.end < endB:
endB = self.end
trackobjA = cross_link._trackA(list(self._parent.tracks.values()))
trackobjB = cross_link._trackB(list(self._parent.tracks.values()))
assert trackobjA is not None
assert trackobjB is not None
if trackobjA == trackobjB:
raise NotImplementedError()
if trackobjA.start is not None:
if endA < trackobjA.start:
return
startA = max(startA, trackobjA.start)
if trackobjA.end is not None:
if trackobjA.end < startA:
return
endA = min(endA, trackobjA.end)
if trackobjB.start is not None:
if endB < trackobjB.start:
return
startB = max(startB, trackobjB.start)
if trackobjB.end is not None:
if trackobjB.end < startB:
return
endB = min(endB, trackobjB.end)
for track_level in self._parent.get_drawn_levels():
track = self._parent[track_level]
if track == trackobjA:
trackA = track_level
if track == trackobjB:
trackB = track_level
if trackA == trackB:
raise NotImplementedError()
startangleA, startcosA, startsinA = self.canvas_angle(startA)
startangleB, startcosB, startsinB = self.canvas_angle(startB)
endangleA, endcosA, endsinA = self.canvas_angle(endA)
endangleB, endcosB, endsinB = self.canvas_angle(endB)
btmA, ctrA, topA = self.track_radii[trackA]
btmB, ctrB, topB = self.track_radii[trackB]
if ctrA < ctrB:
return [
self._draw_arc_poly(
topA,
btmB,
startangleA,
endangleA,
startangleB,
endangleB,
cross_link.color,
cross_link.border,
cross_link.flip,
)
]
else:
return [
self._draw_arc_poly(
btmA,
topB,
startangleA,
endangleA,
startangleB,
endangleB,
cross_link.color,
cross_link.border,
cross_link.flip,
)
]
def draw_graph_set(self, set):
"""Return list of graph elements and list of their labels.
Arguments:
- set GraphSet object
"""
# print('draw graph set')
elements = [] # Holds graph elements
# Distribution dictionary for how to draw the graph
style_methods = {
"line": self.draw_line_graph,
"heat": self.draw_heat_graph,
"bar": self.draw_bar_graph,
}
for graph in set.get_graphs():
elements += style_methods[graph.style](graph)
return elements, []
def draw_line_graph(self, graph):
"""Return line graph as list of drawable elements.
Arguments:
- graph GraphData object
"""
line_elements = [] # holds drawable elements
# Get graph data
data_quartiles = graph.quartiles()
minval, maxval = data_quartiles[0], data_quartiles[4]
btm, ctr, top = self.track_radii[self.current_track_level]
trackheight = 0.5 * (top - btm)
datarange = maxval - minval
if datarange == 0:
datarange = trackheight
start, end = self._current_track_start_end()
data = graph[start:end]
if not data:
return []
# midval is the value at which the x-axis is plotted, and is the
# central ring in the track
if graph.center is None:
midval = (maxval + minval) / 2.0
else:
midval = graph.center
# Whichever is the greatest difference: max-midval or min-midval, is
# taken to specify the number of pixel units resolved along the
# y-axis
resolution = max((midval - minval), (maxval - midval))
# Start from first data point
pos, val = data[0]
lastangle, lastcos, lastsin = self.canvas_angle(pos)
# We calculate the track height
posheight = trackheight * (val - midval) / resolution + ctr
lastx = self.xcenter + posheight * lastsin # start xy coords
lasty = self.ycenter + posheight * lastcos
for pos, val in data:
posangle, poscos, possin = self.canvas_angle(pos)
posheight = trackheight * (val - midval) / resolution + ctr
x = self.xcenter + posheight * possin # next xy coords
y = self.ycenter + posheight * poscos
line_elements.append(
Line(
lastx,
lasty,
x,
y,
strokeColor=graph.poscolor,
strokeWidth=graph.linewidth,
)
)
lastx, lasty = x, y
return line_elements
def draw_bar_graph(self, graph):
"""Return list of drawable elements for a bar graph.
Arguments:
- graph Graph object
"""
# At each point contained in the graph data, we draw a vertical bar
# from the track center to the height of the datapoint value (positive
# values go up in one color, negative go down in the alternative
# color).
bar_elements = []
# Set the number of pixels per unit for the data
data_quartiles = graph.quartiles()
minval, maxval = data_quartiles[0], data_quartiles[4]
btm, ctr, top = self.track_radii[self.current_track_level]
trackheight = 0.5 * (top - btm)
datarange = maxval - minval
if datarange == 0:
datarange = trackheight
data = graph[self.start : self.end]
# midval is the value at which the x-axis is plotted, and is the
# central ring in the track
if graph.center is None:
midval = (maxval + minval) / 2.0
else:
midval = graph.center
# Convert data into 'binned' blocks, covering half the distance to the
# next data point on either side, accounting for the ends of fragments
# and tracks
start, end = self._current_track_start_end()
data = intermediate_points(start, end, graph[start:end])
if not data:
return []
# Whichever is the greatest difference: max-midval or min-midval, is
# taken to specify the number of pixel units resolved along the
# y-axis
resolution = max((midval - minval), (maxval - midval))
if resolution == 0:
resolution = trackheight
# Create elements for the bar graph based on newdata
for pos0, pos1, val in data:
pos0angle, pos0cos, pos0sin = self.canvas_angle(pos0)
pos1angle, pos1cos, pos1sin = self.canvas_angle(pos1)
barval = trackheight * (val - midval) / resolution
if barval >= 0:
barcolor = graph.poscolor
else:
barcolor = graph.negcolor
# Draw bar
bar_elements.append(
self._draw_arc(ctr, ctr + barval, pos0angle, pos1angle, barcolor)
)
return bar_elements
def draw_heat_graph(self, graph):
"""Return list of drawable elements for the heat graph.
Arguments:
- graph Graph object
"""
# At each point contained in the graph data, we draw a box that is the
# full height of the track, extending from the midpoint between the
# previous and current data points to the midpoint between the current
# and next data points
heat_elements = [] # holds drawable elements
# Get graph data
data_quartiles = graph.quartiles()
minval, maxval = data_quartiles[0], data_quartiles[4]
midval = (maxval + minval) / 2.0 # mid is the value at the X-axis
btm, ctr, top = self.track_radii[self.current_track_level]
trackheight = top - btm
start, end = self._current_track_start_end()
data = intermediate_points(start, end, graph[start:end])
# Create elements on the graph, indicating a large positive value by
# the graph's poscolor, and a large negative value by the graph's
# negcolor attributes
for pos0, pos1, val in data:
pos0angle, pos0cos, pos0sin = self.canvas_angle(pos0)
pos1angle, pos1cos, pos1sin = self.canvas_angle(pos1)
# Calculate the heat color, based on the differential between
# the value and the median value
heat = colors.linearlyInterpolatedColor(
graph.poscolor, graph.negcolor, maxval, minval, val
)
# Draw heat box
heat_elements.append(
self._draw_arc(btm, top, pos0angle, pos1angle, heat, border=heat)
)
return heat_elements
def draw_scale(self, track):
"""Return list of elements in the scale and list of their labels.
Arguments:
- track Track object
"""
scale_elements = [] # holds axes and ticks
scale_labels = [] # holds labels
if not track.scale:
# no scale required, exit early
return [], []
# Get track locations
btm, ctr, top = self.track_radii[self.current_track_level]
trackheight = top - ctr
# X-axis
start, end = self._current_track_start_end()
if track.start is not None or track.end is not None:
# Draw an arc, leaving out the wedge
p = ArcPath(strokeColor=track.scale_color, fillColor=None)
startangle, startcos, startsin = self.canvas_angle(start)
endangle, endcos, endsin = self.canvas_angle(end)
p.addArc(
self.xcenter,
self.ycenter,
ctr,
90 - (endangle * 180 / pi),
90 - (startangle * 180 / pi),
)
scale_elements.append(p)
del p
# Y-axis start marker
x0, y0 = self.xcenter + btm * startsin, self.ycenter + btm * startcos
x1, y1 = self.xcenter + top * startsin, self.ycenter + top * startcos
scale_elements.append(Line(x0, y0, x1, y1, strokeColor=track.scale_color))
# Y-axis end marker
x0, y0 = self.xcenter + btm * endsin, self.ycenter + btm * endcos
x1, y1 = self.xcenter + top * endsin, self.ycenter + top * endcos
scale_elements.append(Line(x0, y0, x1, y1, strokeColor=track.scale_color))
elif self.sweep < 1:
# Draw an arc, leaving out the wedge
p = ArcPath(strokeColor=track.scale_color, fillColor=None)
# Note reportlab counts angles anti-clockwise from the horizontal
# (as in mathematics, e.g. complex numbers and polar coordinates)
# in degrees.
p.addArc(
self.xcenter,
self.ycenter,
ctr,
startangledegrees=90 - 360 * self.sweep,
endangledegrees=90,
)
scale_elements.append(p)
del p
# Y-axis start marker
x0, y0 = self.xcenter, self.ycenter + btm
x1, y1 = self.xcenter, self.ycenter + top
scale_elements.append(Line(x0, y0, x1, y1, strokeColor=track.scale_color))
# Y-axis end marker
alpha = 2 * pi * self.sweep
x0, y0 = self.xcenter + btm * sin(alpha), self.ycenter + btm * cos(alpha)
x1, y1 = self.xcenter + top * sin(alpha), self.ycenter + top * cos(alpha)
scale_elements.append(Line(x0, y0, x1, y1, strokeColor=track.scale_color))
else:
# Draw a full circle
scale_elements.append(
Circle(
self.xcenter,
self.ycenter,
ctr,
strokeColor=track.scale_color,
fillColor=None,
)
)
start, end = self._current_track_start_end()
if track.scale_ticks: # Ticks are required on the scale
# Draw large ticks
# I want the ticks to be consistently positioned relative to
# the start of the sequence (position 0), not relative to the
# current viewpoint (self.start and self.end)
ticklen = track.scale_largeticks * trackheight
tickiterval = int(track.scale_largetick_interval)
# Note that we could just start the list of ticks using
# range(0,self.end,tickinterval) and the filter out the
# ones before self.start - but this seems wasteful.
# Using tickiterval * (self.start/tickiterval) is a shortcut.
for tickpos in range(
tickiterval * (self.start // tickiterval), int(self.end), tickiterval
):
if tickpos <= start or end <= tickpos:
continue
tick, label = self.draw_tick(
tickpos, ctr, ticklen, track, track.scale_largetick_labels
)
scale_elements.append(tick)
if label is not None: # If there's a label, add it
scale_labels.append(label)
# Draw small ticks
ticklen = track.scale_smallticks * trackheight
tickiterval = int(track.scale_smalltick_interval)
for tickpos in range(
tickiterval * (self.start // tickiterval), int(self.end), tickiterval
):
if tickpos <= start or end <= tickpos:
continue
tick, label = self.draw_tick(
tickpos, ctr, ticklen, track, track.scale_smalltick_labels
)
scale_elements.append(tick)
if label is not None: # If there's a label, add it
scale_labels.append(label)
# Check to see if the track contains a graph - if it does, get the
# minimum and maximum values, and put them on the scale Y-axis
# at 60 degree intervals, ordering the labels by graph_id
startangle, startcos, startsin = self.canvas_angle(start)
endangle, endcos, endsin = self.canvas_angle(end)
if track.axis_labels:
for set in track.get_sets():
if set.__class__ is GraphSet:
# Y-axis
for n in range(7):
angle = n * 1.0471975511965976
if angle < startangle or endangle < angle:
continue
ticksin, tickcos = sin(angle), cos(angle)
x0, y0 = (
self.xcenter + btm * ticksin,
self.ycenter + btm * tickcos,
)
x1, y1 = (
self.xcenter + top * ticksin,
self.ycenter + top * tickcos,
)
scale_elements.append(
Line(x0, y0, x1, y1, strokeColor=track.scale_color)
)
graph_label_min = []
graph_label_max = []
graph_label_mid = []
for graph in set.get_graphs():
quartiles = graph.quartiles()
minval, maxval = quartiles[0], quartiles[4]
if graph.center is None:
midval = (maxval + minval) / 2.0
graph_label_min.append(f"{minval:.3f}")
graph_label_max.append(f"{maxval:.3f}")
graph_label_mid.append(f"{midval:.3f}")
else:
diff = max(
(graph.center - minval), (maxval - graph.center)
)
minval = graph.center - diff
maxval = graph.center + diff
midval = graph.center
graph_label_mid.append(f"{midval:.3f}")
graph_label_min.append(f"{minval:.3f}")
graph_label_max.append(f"{maxval:.3f}")
xmid, ymid = (x0 + x1) / 2.0, (y0 + y1) / 2.0
for limit, x, y in [
(graph_label_min, x0, y0),
(graph_label_max, x1, y1),
(graph_label_mid, xmid, ymid),
]:
label = String(
0,
0,
";".join(limit),
fontName=track.scale_font,
fontSize=track.scale_fontsize,
fillColor=track.scale_color,
)
label.textAnchor = "middle"
labelgroup = Group(label)
labelgroup.transform = (
tickcos,
-ticksin,
ticksin,
tickcos,
x,
y,
)
scale_labels.append(labelgroup)
return scale_elements, scale_labels
def draw_tick(self, tickpos, ctr, ticklen, track, draw_label):
"""Return drawing element for a tick on the scale.
Arguments:
- tickpos Int, position of the tick on the sequence
- ctr Float, Y co-ord of the center of the track
- ticklen How long to draw the tick
- track Track, the track the tick is drawn on
- draw_label Boolean, write the tick label?
"""
# Calculate tick coordinates
tickangle, tickcos, ticksin = self.canvas_angle(tickpos)
x0, y0 = self.xcenter + ctr * ticksin, self.ycenter + ctr * tickcos
x1, y1 = (
self.xcenter + (ctr + ticklen) * ticksin,
self.ycenter + (ctr + ticklen) * tickcos,
)
# Calculate height of text label so it can be offset on lower half
# of diagram
# LP: not used, as not all fonts have ascent_descent data in reportlab.pdfbase._fontdata
# label_offset = _fontdata.ascent_descent[track.scale_font][0]*\
# track.scale_fontsize/1000.
tick = Line(x0, y0, x1, y1, strokeColor=track.scale_color)
if draw_label:
# Put tick position on as label
if track.scale_format == "SInt":
if tickpos >= 1000000:
tickstring = str(tickpos // 1000000) + " Mbp"
elif tickpos >= 1000:
tickstring = str(tickpos // 1000) + " Kbp"
else:
tickstring = str(tickpos)
else:
tickstring = str(tickpos)
label = String(
0,
0,
tickstring, # Make label string
fontName=track.scale_font,
fontSize=track.scale_fontsize,
fillColor=track.scale_color,
)
if tickangle > pi:
label.textAnchor = "end"
# LP: This label_offset depends on ascent_descent data, which is not available for all
# fonts, so has been deprecated.
# if 0.5*pi < tickangle < 1.5*pi:
# y1 -= label_offset
labelgroup = Group(label)
labelgroup.transform = (1, 0, 0, 1, x1, y1)
else:
labelgroup = None
return tick, labelgroup
def draw_test_tracks(self):
"""Draw blue test tracks with grene line down their center."""
# Add lines only for drawn tracks
for track in self.drawn_tracks:
btm, ctr, top = self.track_radii[track]
self.drawing.add(
Circle(
self.xcenter,
self.ycenter,
top,
strokeColor=colors.blue,
fillColor=None,
)
) # top line
self.drawing.add(
Circle(
self.xcenter,
self.ycenter,
ctr,
strokeColor=colors.green,
fillColor=None,
)
) # middle line
self.drawing.add(
Circle(
self.xcenter,
self.ycenter,
btm,
strokeColor=colors.blue,
fillColor=None,
)
) # bottom line
def draw_greytrack(self, track):
"""Drawing element for grey background to passed Track object."""
greytrack_bgs = [] # Holds track backgrounds
greytrack_labels = [] # Holds track foreground labels
if not track.greytrack: # No greytrack required, return early
return [], []
# Get track location
btm, ctr, top = self.track_radii[self.current_track_level]
start, end = self._current_track_start_end()
startangle, startcos, startsin = self.canvas_angle(start)
endangle, endcos, endsin = self.canvas_angle(end)
# Make background
if track.start is not None or track.end is not None:
# Draw an arc, leaving out the wedge
p = ArcPath(strokeColor=track.scale_color, fillColor=None)
greytrack_bgs.append(
self._draw_arc(
btm, top, startangle, endangle, colors.Color(0.96, 0.96, 0.96)
)
)
elif self.sweep < 1:
# Make a partial circle, a large arc box
# This method assumes the correct center for us.
greytrack_bgs.append(
self._draw_arc(
btm, top, 0, 2 * pi * self.sweep, colors.Color(0.96, 0.96, 0.96)
)
)
else:
# Make a full circle (using a VERY thick linewidth)
greytrack_bgs.append(
Circle(
self.xcenter,
self.ycenter,
ctr,
strokeColor=colors.Color(0.96, 0.96, 0.96),
fillColor=None,
strokeWidth=top - btm,
)
)
if track.greytrack_labels:
# Labels are required for this track
labelstep = self.length // track.greytrack_labels # label interval
for pos in range(self.start, self.end, labelstep):
label = String(
0,
0,
track.name, # Add a new label at
fontName=track.greytrack_font, # each interval
fontSize=track.greytrack_fontsize,
fillColor=track.greytrack_fontcolor,
)
theta, costheta, sintheta = self.canvas_angle(pos)
if theta < startangle or endangle < theta:
continue
x, y = (
self.xcenter + btm * sintheta,
self.ycenter + btm * costheta,
) # start text halfway up marker
labelgroup = Group(label)
labelangle = (
self.sweep * 2 * pi * (pos - self.start) / self.length - pi / 2
)
if theta > pi:
label.textAnchor = "end" # Anchor end of text to inner radius
labelangle += pi # and reorient it
cosA, sinA = cos(labelangle), sin(labelangle)
labelgroup.transform = (cosA, -sinA, sinA, cosA, x, y)
if not self.length - x <= labelstep: # Don't overrun the circle
greytrack_labels.append(labelgroup)
return greytrack_bgs, greytrack_labels
def canvas_angle(self, base):
"""Given base-pair position, return (angle, cosine, sin) (PRIVATE)."""
angle = self.sweep * 2 * pi * (base - self.start) / self.length
return (angle, cos(angle), sin(angle))
def _draw_sigil_box(
self, bottom, center, top, startangle, endangle, strand, **kwargs
):
"""Draw BOX sigil (PRIVATE)."""
if strand == 1:
inner_radius = center
outer_radius = top
elif strand == -1:
inner_radius = bottom
outer_radius = center
else:
inner_radius = bottom
outer_radius = top
return self._draw_arc(
inner_radius, outer_radius, startangle, endangle, **kwargs
)
def _draw_arc(
self,
inner_radius,
outer_radius,
startangle,
endangle,
color,
border=None,
colour=None,
**kwargs,
):
"""Return closed path describing an arc box (PRIVATE).
Arguments:
- inner_radius Float distance of inside of arc from drawing center
- outer_radius Float distance of outside of arc from drawing center
- startangle Float angle subtended by start of arc at drawing center
(in radians)
- endangle Float angle subtended by end of arc at drawing center
(in radians)
- color colors.Color object for arc (overridden by backwards
compatible argument with UK spelling, colour).
Returns a closed path object describing an arced box corresponding to
the passed values. For very small angles, a simple four sided
polygon is used.
"""
# Let the UK spelling (colour) override the USA spelling (color)
if colour is not None:
color = colour
strokecolor, color = _stroke_and_fill_colors(color, border)
if abs(endangle - startangle) > 0.01:
# Wide arc, must use full curves
p = ArcPath(strokeColor=strokecolor, fillColor=color, strokewidth=0)
# Note reportlab counts angles anti-clockwise from the horizontal
# (as in mathematics, e.g. complex numbers and polar coordinates)
# but we use clockwise from the vertical. Also reportlab uses
# degrees, but we use radians.
p.addArc(
self.xcenter,
self.ycenter,
inner_radius,
90 - (endangle * 180 / pi),
90 - (startangle * 180 / pi),
moveTo=True,
)
p.addArc(
self.xcenter,
self.ycenter,
outer_radius,
90 - (endangle * 180 / pi),
90 - (startangle * 180 / pi),
reverse=True,
)
p.closePath()
return p
else:
# Cheat and just use a four sided polygon.
# Calculate trig values for angle and coordinates
startcos, startsin = cos(startangle), sin(startangle)
endcos, endsin = cos(endangle), sin(endangle)
x0, y0 = self.xcenter, self.ycenter # origin of the circle
x1, y1 = (x0 + inner_radius * startsin, y0 + inner_radius * startcos)
x2, y2 = (x0 + inner_radius * endsin, y0 + inner_radius * endcos)
x3, y3 = (x0 + outer_radius * endsin, y0 + outer_radius * endcos)
x4, y4 = (x0 + outer_radius * startsin, y0 + outer_radius * startcos)
return draw_polygon([(x1, y1), (x2, y2), (x3, y3), (x4, y4)], color, border)
def _draw_arc_line(
self, path, start_radius, end_radius, start_angle, end_angle, move=False
):
"""Add a list of points to a path object (PRIVATE).
Assumes angles given are in degrees!
Represents what would be a straight line on a linear diagram.
"""
x0, y0 = self.xcenter, self.ycenter # origin of the circle
radius_diff = end_radius - start_radius
angle_diff = end_angle - start_angle
dx = 0.01 # heuristic
a = start_angle * pi / 180
if move:
path.moveTo(x0 + start_radius * cos(a), y0 + start_radius * sin(a))
else:
path.lineTo(x0 + start_radius * cos(a), y0 + start_radius * sin(a))
x = dx
if 0.01 <= abs(dx):
while x < 1:
r = start_radius + x * radius_diff
a = (
(start_angle + x * (angle_diff)) * pi / 180
) # to radians for sin/cos
# print(x0+r*cos(a), y0+r*sin(a))
path.lineTo(x0 + r * cos(a), y0 + r * sin(a))
x += dx
a = end_angle * pi / 180
path.lineTo(x0 + end_radius * cos(a), y0 + end_radius * sin(a))
def _draw_arc_poly(
self,
inner_radius,
outer_radius,
inner_startangle,
inner_endangle,
outer_startangle,
outer_endangle,
color,
border=None,
flip=False,
**kwargs,
):
"""Return polygon path describing an arc."""
strokecolor, color = _stroke_and_fill_colors(color, border)
x0, y0 = self.xcenter, self.ycenter # origin of the circle
if (
abs(inner_endangle - outer_startangle) > 0.01
or abs(outer_endangle - inner_startangle) > 0.01
or abs(inner_startangle - outer_startangle) > 0.01
or abs(outer_startangle - outer_startangle) > 0.01
):
# Wide arc, must use full curves
p = ArcPath(
strokeColor=strokecolor,
fillColor=color,
# default is mitre/miter which can stick out too much:
strokeLineJoin=1, # 1=round
strokewidth=0,
)
# Note reportlab counts angles anti-clockwise from the horizontal
# (as in mathematics, e.g. complex numbers and polar coordinates)
# but we use clockwise from the vertical. Also reportlab uses
# degrees, but we use radians.
i_start = 90 - (inner_startangle * 180 / pi)
i_end = 90 - (inner_endangle * 180 / pi)
o_start = 90 - (outer_startangle * 180 / pi)
o_end = 90 - (outer_endangle * 180 / pi)
p.addArc(x0, y0, inner_radius, i_end, i_start, moveTo=True, reverse=True)
if flip:
# Flipped, join end to start,
self._draw_arc_line(p, inner_radius, outer_radius, i_end, o_start)
p.addArc(x0, y0, outer_radius, o_end, o_start, reverse=True)
self._draw_arc_line(p, outer_radius, inner_radius, o_end, i_start)
else:
# Not flipped, join start to start, end to end
self._draw_arc_line(p, inner_radius, outer_radius, i_end, o_end)
p.addArc(x0, y0, outer_radius, o_end, o_start, reverse=False)
self._draw_arc_line(p, outer_radius, inner_radius, o_start, i_start)
p.closePath()
return p
else:
# Cheat and just use a four sided polygon.
# Calculate trig values for angle and coordinates
inner_startcos, inner_startsin = (
cos(inner_startangle),
sin(inner_startangle),
)
inner_endcos, inner_endsin = cos(inner_endangle), sin(inner_endangle)
outer_startcos, outer_startsin = (
cos(outer_startangle),
sin(outer_startangle),
)
outer_endcos, outer_endsin = cos(outer_endangle), sin(outer_endangle)
x1, y1 = (
x0 + inner_radius * inner_startsin,
y0 + inner_radius * inner_startcos,
)
x2, y2 = (
x0 + inner_radius * inner_endsin,
y0 + inner_radius * inner_endcos,
)
x3, y3 = (
x0 + outer_radius * outer_endsin,
y0 + outer_radius * outer_endcos,
)
x4, y4 = (
x0 + outer_radius * outer_startsin,
y0 + outer_radius * outer_startcos,
)
return draw_polygon(
[(x1, y1), (x2, y2), (x3, y3), (x4, y4)],
color,
border,
# default is mitre/miter which can stick out too much:
strokeLineJoin=1, # 1=round
)
def _draw_sigil_cut_corner_box(
self,
bottom,
center,
top,
startangle,
endangle,
strand,
color,
border=None,
corner=0.5,
**kwargs,
):
"""Draw OCTO sigil, box with corners cut off (PRIVATE)."""
if strand == 1:
inner_radius = center
outer_radius = top
elif strand == -1:
inner_radius = bottom
outer_radius = center
else:
inner_radius = bottom
outer_radius = top
strokecolor, color = _stroke_and_fill_colors(color, border)
startangle, endangle = min(startangle, endangle), max(startangle, endangle)
angle = endangle - startangle
middle_radius = 0.5 * (inner_radius + outer_radius)
boxheight = outer_radius - inner_radius
corner_len = min(0.5 * boxheight, 0.5 * boxheight * corner)
shaft_inner_radius = inner_radius + corner_len
shaft_outer_radius = outer_radius - corner_len
cornerangle_delta = max(
0.0, min(abs(boxheight) * 0.5 * corner / middle_radius, abs(angle * 0.5))
)
if angle < 0:
cornerangle_delta *= -1 # reverse it
# Calculate trig values for angle and coordinates
startcos, startsin = cos(startangle), sin(startangle)
endcos, endsin = cos(endangle), sin(endangle)
x0, y0 = self.xcenter, self.ycenter # origin of the circle
p = ArcPath(
strokeColor=strokecolor,
fillColor=color,
strokeLineJoin=1, # 1=round
strokewidth=0,
**kwargs,
)
# Inner curved edge
p.addArc(
self.xcenter,
self.ycenter,
inner_radius,
90 - ((endangle - cornerangle_delta) * 180 / pi),
90 - ((startangle + cornerangle_delta) * 180 / pi),
moveTo=True,
)
# Corner edge - straight lines assumes small angle!
# TODO - Use self._draw_arc_line(p, ...) here if we expose corner setting
p.lineTo(x0 + shaft_inner_radius * startsin, y0 + shaft_inner_radius * startcos)
p.lineTo(x0 + shaft_outer_radius * startsin, y0 + shaft_outer_radius * startcos)
# Outer curved edge
p.addArc(
self.xcenter,
self.ycenter,
outer_radius,
90 - ((endangle - cornerangle_delta) * 180 / pi),
90 - ((startangle + cornerangle_delta) * 180 / pi),
reverse=True,
)
# Corner edges
p.lineTo(x0 + shaft_outer_radius * endsin, y0 + shaft_outer_radius * endcos)
p.lineTo(x0 + shaft_inner_radius * endsin, y0 + shaft_inner_radius * endcos)
p.closePath()
return p
def _draw_sigil_arrow(
self, bottom, center, top, startangle, endangle, strand, **kwargs
):
"""Draw ARROW sigil (PRIVATE)."""
if strand == 1:
inner_radius = center
outer_radius = top
orientation = "right"
elif strand == -1:
inner_radius = bottom
outer_radius = center
orientation = "left"
else:
inner_radius = bottom
outer_radius = top
orientation = "right" # backwards compatibility
return self._draw_arc_arrow(
inner_radius,
outer_radius,
startangle,
endangle,
orientation=orientation,
**kwargs,
)
def _draw_sigil_big_arrow(
self, bottom, center, top, startangle, endangle, strand, **kwargs
):
"""Draw BIGARROW sigil, like ARROW but straddles the axis (PRIVATE)."""
if strand == -1:
orientation = "left"
else:
orientation = "right"
return self._draw_arc_arrow(
bottom, top, startangle, endangle, orientation=orientation, **kwargs
)
def _draw_arc_arrow(
self,
inner_radius,
outer_radius,
startangle,
endangle,
color,
border=None,
shaft_height_ratio=0.4,
head_length_ratio=0.5,
orientation="right",
colour=None,
**kwargs,
):
"""Draw an arrow along an arc (PRIVATE)."""
# Let the UK spelling (colour) override the USA spelling (color)
if colour is not None:
color = colour
strokecolor, color = _stroke_and_fill_colors(color, border)
# if orientation == 'right':
# startangle, endangle = min(startangle, endangle), max(startangle, endangle)
# elif orientation == 'left':
# startangle, endangle = max(startangle, endangle), min(startangle, endangle)
# else:
startangle, endangle = min(startangle, endangle), max(startangle, endangle)
if orientation != "left" and orientation != "right":
raise ValueError(
f"Invalid orientation {orientation!r}, should be 'left' or 'right'"
)
angle = endangle - startangle # angle subtended by arc
middle_radius = 0.5 * (inner_radius + outer_radius)
boxheight = outer_radius - inner_radius
shaft_height = boxheight * shaft_height_ratio
shaft_inner_radius = middle_radius - 0.5 * shaft_height
shaft_outer_radius = middle_radius + 0.5 * shaft_height
headangle_delta = max(
0.0, min(abs(boxheight) * head_length_ratio / middle_radius, abs(angle))
)
if angle < 0:
headangle_delta *= -1 # reverse it
if orientation == "right":
headangle = endangle - headangle_delta
else:
headangle = startangle + headangle_delta
if startangle <= endangle:
headangle = max(min(headangle, endangle), startangle)
else:
headangle = max(min(headangle, startangle), endangle)
if not (
startangle <= headangle <= endangle or endangle <= headangle <= startangle
):
raise RuntimeError(
"Problem drawing arrow, invalid positions. "
"Start angle: %s, Head angle: %s, "
"End angle: %s, Angle: %s" % (startangle, headangle, endangle, angle)
)
# Calculate trig values for angle and coordinates
startcos, startsin = cos(startangle), sin(startangle)
headcos, headsin = cos(headangle), sin(headangle)
endcos, endsin = cos(endangle), sin(endangle)
x0, y0 = self.xcenter, self.ycenter # origin of the circle
if 0.5 >= abs(angle) and abs(headangle_delta) >= abs(angle):
# If the angle is small, and the arrow is all head,
# cheat and just use a triangle.
if orientation == "right":
x1, y1 = (x0 + inner_radius * startsin, y0 + inner_radius * startcos)
x2, y2 = (x0 + outer_radius * startsin, y0 + outer_radius * startcos)
x3, y3 = (x0 + middle_radius * endsin, y0 + middle_radius * endcos)
else:
x1, y1 = (x0 + inner_radius * endsin, y0 + inner_radius * endcos)
x2, y2 = (x0 + outer_radius * endsin, y0 + outer_radius * endcos)
x3, y3 = (x0 + middle_radius * startsin, y0 + middle_radius * startcos)
# return draw_polygon([(x1,y1),(x2,y2),(x3,y3)], color, border,
# stroke_line_join=1)
return Polygon(
[x1, y1, x2, y2, x3, y3],
strokeColor=border or color,
fillColor=color,
strokeLineJoin=1, # 1=round, not mitre!
strokewidth=0,
)
elif orientation == "right":
p = ArcPath(
strokeColor=strokecolor,
fillColor=color,
# default is mitre/miter which can stick out too much:
strokeLineJoin=1, # 1=round
strokewidth=0,
**kwargs,
)
# Note reportlab counts angles anti-clockwise from the horizontal
# (as in mathematics, e.g. complex numbers and polar coordinates)
# but we use clockwise from the vertical. Also reportlab uses
# degrees, but we use radians.
p.addArc(
self.xcenter,
self.ycenter,
shaft_inner_radius,
90 - (headangle * 180 / pi),
90 - (startangle * 180 / pi),
moveTo=True,
)
p.addArc(
self.xcenter,
self.ycenter,
shaft_outer_radius,
90 - (headangle * 180 / pi),
90 - (startangle * 180 / pi),
reverse=True,
)
if abs(angle) < 0.5:
p.lineTo(x0 + outer_radius * headsin, y0 + outer_radius * headcos)
p.lineTo(x0 + middle_radius * endsin, y0 + middle_radius * endcos)
p.lineTo(x0 + inner_radius * headsin, y0 + inner_radius * headcos)
else:
self._draw_arc_line(
p,
outer_radius,
middle_radius,
90 - (headangle * 180 / pi),
90 - (endangle * 180 / pi),
)
self._draw_arc_line(
p,
middle_radius,
inner_radius,
90 - (endangle * 180 / pi),
90 - (headangle * 180 / pi),
)
p.closePath()
return p
else:
p = ArcPath(
strokeColor=strokecolor,
fillColor=color,
# default is mitre/miter which can stick out too much:
strokeLineJoin=1, # 1=round
strokewidth=0,
**kwargs,
)
# Note reportlab counts angles anti-clockwise from the horizontal
# (as in mathematics, e.g. complex numbers and polar coordinates)
# but we use clockwise from the vertical. Also reportlab uses
# degrees, but we use radians.
p.addArc(
self.xcenter,
self.ycenter,
shaft_inner_radius,
90 - (endangle * 180 / pi),
90 - (headangle * 180 / pi),
moveTo=True,
reverse=True,
)
p.addArc(
self.xcenter,
self.ycenter,
shaft_outer_radius,
90 - (endangle * 180 / pi),
90 - (headangle * 180 / pi),
reverse=False,
)
# Note - two staight lines is only a good approximation for small
# head angle, in general will need to curved lines here:
if abs(angle) < 0.5:
p.lineTo(x0 + outer_radius * headsin, y0 + outer_radius * headcos)
p.lineTo(x0 + middle_radius * startsin, y0 + middle_radius * startcos)
p.lineTo(x0 + inner_radius * headsin, y0 + inner_radius * headcos)
else:
self._draw_arc_line(
p,
outer_radius,
middle_radius,
90 - (headangle * 180 / pi),
90 - (startangle * 180 / pi),
)
self._draw_arc_line(
p,
middle_radius,
inner_radius,
90 - (startangle * 180 / pi),
90 - (headangle * 180 / pi),
)
p.closePath()
return p
def _draw_sigil_jaggy(
self,
bottom,
center,
top,
startangle,
endangle,
strand,
color,
border=None,
**kwargs,
):
"""Draw JAGGY sigil (PRIVATE).
Although we may in future expose the head/tail jaggy lengths, for now
both the left and right edges are drawn jagged.
"""
if strand == 1:
inner_radius = center
outer_radius = top
teeth = 2
elif strand == -1:
inner_radius = bottom
outer_radius = center
teeth = 2
else:
inner_radius = bottom
outer_radius = top
teeth = 4
# TODO, expose these settings?
tail_length_ratio = 1.0
head_length_ratio = 1.0
strokecolor, color = _stroke_and_fill_colors(color, border)
startangle, endangle = min(startangle, endangle), max(startangle, endangle)
angle = endangle - startangle # angle subtended by arc
height = outer_radius - inner_radius
assert startangle <= endangle and angle >= 0
if head_length_ratio and tail_length_ratio:
headangle = max(
endangle
- min(height * head_length_ratio / (center * teeth), angle * 0.5),
startangle,
)
tailangle = min(
startangle
+ min(height * tail_length_ratio / (center * teeth), angle * 0.5),
endangle,
)
# With very small features, can due to floating point calculations
# violate the assertion below that start <= tail <= head <= end
tailangle = min(tailangle, headangle)
elif head_length_ratio:
headangle = max(
endangle - min(height * head_length_ratio / (center * teeth), angle),
startangle,
)
tailangle = startangle
else:
headangle = endangle
tailangle = min(
startangle + min(height * tail_length_ratio / (center * teeth), angle),
endangle,
)
if not startangle <= tailangle <= headangle <= endangle:
raise RuntimeError(
"Problem drawing jaggy sigil, invalid "
"positions. Start angle: %s, "
"Tail angle: %s, Head angle: %s, End angle %s, "
"Angle: %s" % (startangle, tailangle, headangle, endangle, angle)
)
# Calculate trig values for angle and coordinates
startcos, startsin = cos(startangle), sin(startangle)
headcos, headsin = cos(headangle), sin(headangle)
endcos, endsin = cos(endangle), sin(endangle)
x0, y0 = self.xcenter, self.ycenter # origin of the circle
p = ArcPath(
strokeColor=strokecolor,
fillColor=color,
# default is mitre/miter which can stick out too much:
strokeLineJoin=1, # 1=round
strokewidth=0,
**kwargs,
)
# Note reportlab counts angles anti-clockwise from the horizontal
# (as in mathematics, e.g. complex numbers and polar coordinates)
# but we use clockwise from the vertical. Also reportlab uses
# degrees, but we use radians.
p.addArc(
self.xcenter,
self.ycenter,
inner_radius,
90 - (headangle * 180 / pi),
90 - (tailangle * 180 / pi),
moveTo=True,
)
for i in range(0, teeth):
p.addArc(
self.xcenter,
self.ycenter,
inner_radius + i * height / teeth,
90 - (tailangle * 180 / pi),
90 - (startangle * 180 / pi),
)
# Curved line needed when drawing long jaggies
self._draw_arc_line(
p,
inner_radius + i * height / teeth,
inner_radius + (i + 1) * height / teeth,
90 - (startangle * 180 / pi),
90 - (tailangle * 180 / pi),
)
p.addArc(
self.xcenter,
self.ycenter,
outer_radius,
90 - (headangle * 180 / pi),
90 - (tailangle * 180 / pi),
reverse=True,
)
for i in range(0, teeth):
p.addArc(
self.xcenter,
self.ycenter,
outer_radius - i * height / teeth,
90 - (endangle * 180 / pi),
90 - (headangle * 180 / pi),
reverse=True,
)
# Curved line needed when drawing long jaggies
self._draw_arc_line(
p,
outer_radius - i * height / teeth,
outer_radius - (i + 1) * height / teeth,
90 - (endangle * 180 / pi),
90 - (headangle * 180 / pi),
)
p.closePath()
return p
|