File size: 39,870 Bytes
b7731cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
# Copyright 2005-2008 by Frank Kauff & Cymon J. Cox. All rights reserved.
#
# This file is part of the Biopython distribution and governed by your
# choice of the "Biopython License Agreement" or the "BSD 3-Clause License".
# Please see the LICENSE file that should have been included as part of this
# package.

"""Tree class to handle phylogenetic trees.

Provides a set of methods to read and write newick-format tree descriptions,
get information about trees (monphyly of taxon sets, congruence between trees,
common ancestors,...) and to manipulate trees (re-root trees, split terminal
nodes).
"""


import random
import sys
from . import Nodes


PRECISION_BRANCHLENGTH = 6
PRECISION_SUPPORT = 6
NODECOMMENT_START = "[&"
NODECOMMENT_END = "]"


class TreeError(Exception):
    """Provision for the management of Tree exceptions."""

    pass


class NodeData:
    """Store tree-relevant data associated with nodes (e.g. branches or otus)."""

    def __init__(self, taxon=None, branchlength=0.0, support=None, comment=None):
        """Initialize the class."""
        self.taxon = taxon
        self.branchlength = branchlength
        self.support = support
        self.comment = comment


class Tree(Nodes.Chain):
    """Represent a tree using a chain of nodes with on predecessor (=ancestor) and multiple successors (=subclades)."""

    # A newick tree is parsed into nested list and then converted to a node list in two stages
    # mostly due to historical reasons. This could be done in one swoop). Note: parentheses ( ) and
    # colon : are not allowed in taxon names. This is against NEXUS standard, but makes life much
    # easier when parsing trees.

    # NOTE: Tree should store its data class in something like self.dataclass=data,
    # so that nodes that are generated have easy access to the data class
    # Some routines use automatically NodeData, this needs to be more concise

    def __init__(
        self,
        tree=None,
        weight=1.0,
        rooted=False,
        name="",
        data=NodeData,
        values_are_support=False,
        max_support=1.0,
    ):
        """Ntree(self,tree)."""
        Nodes.Chain.__init__(self)
        self.dataclass = data
        self.__values_are_support = values_are_support
        self.max_support = max_support
        self.weight = weight
        self.rooted = rooted
        self.name = name
        root = Nodes.Node(data())
        self.root = self.add(root)
        if tree:  # use the tree we have
            # if Tree is called from outside Nexus parser, we need to get rid of linebreaks, etc
            tree = tree.strip().replace("\n", "").replace("\r", "")
            # there's discrepancy whether newick allows semicolons et the end
            tree = tree.rstrip(";")
            subtree_info, base_info = self._parse(tree)
            root.data = self._add_nodedata(root.data, [[], base_info])
            self._add_subtree(parent_id=root.id, tree=subtree_info)

    def _parse(self, tree):
        """Parse (a,b,c...)[[[xx]:]yy] into subcomponents and travels down recursively (PRIVATE)."""
        # Remove any leading/trailing white space - want any string starting
        # with " (..." should be recognised as a leaf, "(..."
        tree = tree.strip()
        if tree.count("(") != tree.count(")"):
            raise TreeError("Parentheses do not match in (sub)tree: " + tree)
        if tree.count("(") == 0:  # a leaf
            # check if there's a colon, or a special comment, or both  after the taxon name
            nodecomment = tree.find(NODECOMMENT_START)
            colon = tree.find(":")
            if colon == -1 and nodecomment == -1:  # none
                return [tree, [None]]
            elif colon == -1 and nodecomment > -1:  # only special comment
                return [tree[:nodecomment], self._get_values(tree[nodecomment:])]
            elif colon > -1 and nodecomment == -1:  # only numerical values
                return [tree[:colon], self._get_values(tree[colon + 1 :])]
            elif (
                colon < nodecomment
            ):  # taxon name ends at first colon or with special comment
                return [tree[:colon], self._get_values(tree[colon + 1 :])]
            else:
                return [tree[:nodecomment], self._get_values(tree[nodecomment:])]
        else:
            closing = tree.rfind(")")
            val = self._get_values(tree[closing + 1 :])
            if not val:
                val = [None]
            subtrees = []
            plevel = 0
            prev = 1
            incomment = False
            for p in range(1, closing):
                if not incomment and tree[p] == "(":
                    plevel += 1
                elif not incomment and tree[p] == ")":
                    plevel -= 1
                elif tree[p:].startswith(NODECOMMENT_START):
                    incomment = True
                elif incomment and tree[p] == NODECOMMENT_END:
                    incomment = False
                elif not incomment and tree[p] == "," and plevel == 0:
                    subtrees.append(tree[prev:p])
                    prev = p + 1

            subtrees.append(tree[prev:closing])
            subclades = [self._parse(subtree) for subtree in subtrees]
            return [subclades, val]

    def _add_subtree(self, parent_id=None, tree=None):
        """Add leaf or tree (in newick format) to a parent_id (PRIVATE)."""
        if parent_id is None:
            raise TreeError("Need node_id to connect to.")
        for st in tree:
            nd = self.dataclass()
            nd = self._add_nodedata(nd, st)
            if isinstance(st[0], list):  # it's a subtree
                sn = Nodes.Node(nd)
                self.add(sn, parent_id)
                self._add_subtree(sn.id, st[0])
            else:  # it's a leaf
                nd.taxon = st[0]
                leaf = Nodes.Node(nd)
                self.add(leaf, parent_id)

    def _add_nodedata(self, nd, st):
        """Add data to the node parsed from the comments, taxon and support (PRIVATE)."""
        if isinstance(st[1][-1], str) and st[1][-1].startswith(NODECOMMENT_START):
            nd.comment = st[1].pop(-1)
        # if the first element is a string, it's the subtree node taxon
        elif isinstance(st[1][0], str):
            nd.taxon = st[1][0]
            st[1] = st[1][1:]
        if len(st) > 1:
            if (
                len(st[1]) >= 2
            ):  # if there's two values, support comes first. Is that always so?
                nd.support = st[1][0]
                if st[1][1] is not None:
                    nd.branchlength = st[1][1]
            elif (
                len(st[1]) == 1
            ):  # otherwise it could be real branchlengths or support as branchlengths
                if not self.__values_are_support:  # default
                    if st[1][0] is not None:
                        nd.branchlength = st[1][0]
                else:
                    nd.support = st[1][0]
        return nd

    def _get_values(self, text):
        """Extract values (support/branchlength) from xx[:yyy], xx (PRIVATE)."""
        if text == "":
            return None
        nodecomment = None
        if NODECOMMENT_START in text:  # if there's a [&....] comment, cut it out
            nc_start = text.find(NODECOMMENT_START)
            nc_end = text.find(NODECOMMENT_END)
            if nc_end == -1:
                raise TreeError(
                    "Error in tree description: Found %s without matching %s"
                    % (NODECOMMENT_START, NODECOMMENT_END)
                )
            nodecomment = text[nc_start : nc_end + 1]
            text = text[:nc_start] + text[nc_end + 1 :]

        # parse out supports and branchlengths, with internal node taxa info
        values = []
        taxonomy = None
        for part in [t.strip() for t in text.split(":")]:
            if part:
                try:
                    values.append(float(part))
                except ValueError:
                    assert taxonomy is None, "Two string taxonomies?"
                    taxonomy = part
        if taxonomy:
            values.insert(0, taxonomy)
        if nodecomment:
            values.append(nodecomment)
        return values

    def _walk(self, node=None):
        """Return all node_ids downwards from a node (PRIVATE)."""
        if node is None:
            node = self.root
        for n in self.node(node).succ:
            yield n
            yield from self._walk(n)

    def node(self, node_id):
        """Return the instance of node_id.

        node = node(self,node_id)
        """
        if node_id not in self.chain:
            raise TreeError("Unknown node_id: %d" % node_id)
        return self.chain[node_id]

    def split(self, parent_id=None, n=2, branchlength=1.0):
        """Speciation: generates n (default two) descendants of a node.

        [new ids] = split(self,parent_id=None,n=2,branchlength=1.0):
        """
        if parent_id is None:
            raise TreeError("Missing node_id.")
        ids = []
        parent_data = self.chain[parent_id].data
        for i in range(n):
            node = Nodes.Node()
            if parent_data:
                node.data = self.dataclass()
                # each node has taxon and branchlength attribute
                if parent_data.taxon:
                    node.data.taxon = parent_data.taxon + str(i)
                node.data.branchlength = branchlength
            ids.append(self.add(node, parent_id))
        return ids

    def search_taxon(self, taxon):
        """Return the first matching taxon in self.data.taxon. Not restricted to terminal nodes.

        node_id = search_taxon(self,taxon)

        """
        for id, node in self.chain.items():
            if node.data.taxon == taxon:
                return id
        return None

    def prune(self, taxon):
        """Prune a terminal taxon from the tree.

        id_of_previous_node = prune(self,taxon)
        If taxon is from a bifurcation, the connectiong node will be collapsed
        and its branchlength added to remaining terminal node. This might be no
        longer a meaningful value'
        """
        id = self.search_taxon(taxon)
        if id is None:
            raise TreeError(f"Taxon not found: {taxon}")
        elif id not in self.get_terminals():
            raise TreeError(f"Not a terminal taxon: {taxon}")
        else:
            prev = self.unlink(id)
            self.kill(id)
            if len(self.node(prev).succ) == 1:
                if (
                    prev == self.root
                ):  # we deleted one branch of a bifurcating root, then we have to move the root upwards
                    self.root = self.node(self.root).succ[0]
                    self.node(self.root).branchlength = 0.0
                    self.kill(prev)
                else:
                    succ = self.node(prev).succ[0]
                    new_bl = (
                        self.node(prev).data.branchlength
                        + self.node(succ).data.branchlength
                    )
                    self.collapse(prev)
                    self.node(succ).data.branchlength = new_bl
            return prev

    def get_taxa(self, node_id=None):
        """Return a list of all otus downwards from a node.

        nodes = get_taxa(self,node_id=None)
        """
        if node_id is None:
            node_id = self.root
        if node_id not in self.chain:
            raise TreeError("Unknown node_id: %d." % node_id)
        if self.chain[node_id].succ == []:
            if self.chain[node_id].data:
                return [self.chain[node_id].data.taxon]
            else:
                return None
        else:
            list = []
            for succ in self.chain[node_id].succ:
                list.extend(self.get_taxa(succ))
            return list

    def get_terminals(self):
        """Return a list of all terminal nodes."""
        return [i for i in self.all_ids() if self.node(i).succ == []]

    def is_terminal(self, node):
        """Return True if node is a terminal node."""
        return self.node(node).succ == []

    def is_internal(self, node):
        """Return True if node is an internal node."""
        return len(self.node(node).succ) > 0

    def is_preterminal(self, node):
        """Return True if all successors of a node are terminal ones."""
        if self.is_terminal(node):
            return False not in [self.is_terminal(n) for n in self.node(node).succ]
        else:
            return False

    def count_terminals(self, node=None):
        """Count the number of terminal nodes that are attached to a node."""
        if node is None:
            node = self.root
        return len([n for n in self._walk(node) if self.is_terminal(n)])

    def collapse_genera(self, space_equals_underscore=True):
        """Collapse all subtrees which belong to the same genus.

        (i.e share the same first word in their taxon name.)
        """
        while True:
            for n in self._walk():
                if self.is_terminal(n):
                    continue
                taxa = self.get_taxa(n)
                genera = []
                for t in taxa:
                    if space_equals_underscore:
                        t = t.replace(" ", "_")
                    try:
                        genus = t.split("_", 1)[0]
                    except IndexError:
                        genus = "None"
                    if genus not in genera:
                        genera.append(genus)
                if len(genera) == 1:
                    self.node(n).data.taxon = genera[0] + " <collapsed>"
                    # now we kill all nodes downstream
                    nodes2kill = list(self._walk(node=n))
                    for kn in nodes2kill:
                        self.kill(kn)
                    self.node(n).succ = []
                    break  # break out of for loop because node list from _walk will be inconsistent
            else:  # for loop exhausted: no genera to collapse left
                break  # while

    def sum_branchlength(self, root=None, node=None):
        """Add up the branchlengths from root (default self.root) to node.

        sum = sum_branchlength(self,root=None,node=None)
        """
        if root is None:
            root = self.root
        if node is None:
            raise TreeError("Missing node id.")
        blen = 0.0
        while node is not None and node is not root:
            blen += self.node(node).data.branchlength
            node = self.node(node).prev
        return blen

    def set_subtree(self, node):
        """Return subtree as a set of nested sets.

        sets = set_subtree(self,node)
        """
        if self.node(node).succ == []:
            return self.node(node).data.taxon
        else:
            try:
                return frozenset(self.set_subtree(n) for n in self.node(node).succ)
            except Exception:
                print(node)
                print(self.node(node).succ)
                for n in self.node(node).succ:
                    print(f"{n} {self.set_subtree(n)}")
                print([self.set_subtree(n) for n in self.node(node).succ])
                raise

    def is_identical(self, tree2):
        """Compare tree and tree2 for identity.

        result = is_identical(self,tree2)
        """
        return self.set_subtree(self.root) == tree2.set_subtree(tree2.root)

    def is_compatible(self, tree2, threshold, strict=True):
        """Compare branches with support>threshold for compatibility.

        result = is_compatible(self,tree2,threshold)
        """
        # check if both trees have the same set of taxa. strict=True enforces this.
        missing2 = set(self.get_taxa()) - set(tree2.get_taxa())
        missing1 = set(tree2.get_taxa()) - set(self.get_taxa())
        if strict and (missing1 or missing2):
            if missing1:
                print(
                    "Taxon/taxa %s is/are missing in tree %s"
                    % (",".join(missing1), self.name)
                )
            if missing2:
                print(
                    "Taxon/taxa %s is/are missing in tree %s"
                    % (",".join(missing2), tree2.name)
                )
            raise TreeError("Can't compare trees with different taxon compositions.")
        t1 = [
            (set(self.get_taxa(n)), self.node(n).data.support)
            for n in self.all_ids()
            if self.node(n).succ
            and (
                self.node(n).data
                and self.node(n).data.support
                and self.node(n).data.support >= threshold
            )
        ]
        t2 = [
            (set(tree2.get_taxa(n)), tree2.node(n).data.support)
            for n in tree2.all_ids()
            if tree2.node(n).succ
            and tree2.node(n).data
            and tree2.node(n).data.support
            and tree2.node(n).data.support >= threshold
        ]
        conflict = []
        for (st1, sup1) in t1:
            for (st2, sup2) in t2:
                if not st1.issubset(st2) and not st2.issubset(
                    st1
                ):  # don't hiccup on upstream nodes
                    intersect, notin1, notin2 = (
                        st1 & st2,
                        st2 - st1,
                        st1 - st2,
                    )  # all three are non-empty sets
                    # if notin1==missing1 or notin2==missing2  <==> st1.issubset(st2) or st2.issubset(st1) ???
                    if intersect and not (
                        notin1.issubset(missing1) or notin2.issubset(missing2)
                    ):  # omit conflicts due to missing taxa
                        conflict.append(
                            (st1, sup1, st2, sup2, intersect, notin1, notin2)
                        )
        return conflict

    def common_ancestor(self, node1, node2):
        """Return the common ancestor that connects two nodes.

        node_id = common_ancestor(self,node1,node2)
        """
        l1 = [self.root] + self.trace(self.root, node1)
        l2 = [self.root] + self.trace(self.root, node2)
        return [n for n in l1 if n in l2][-1]

    def distance(self, node1, node2):
        """Add and return the sum of the branchlengths between two nodes.

        dist = distance(self,node1,node2)
        """
        ca = self.common_ancestor(node1, node2)
        return self.sum_branchlength(ca, node1) + self.sum_branchlength(ca, node2)

    def is_monophyletic(self, taxon_list):
        """Return node_id of common ancestor if taxon_list is monophyletic, -1 otherwise.

        result = is_monophyletic(self,taxon_list)
        """
        taxon_set = set(taxon_list)
        node_id = self.root
        while True:
            subclade_taxa = set(self.get_taxa(node_id))
            if subclade_taxa == taxon_set:  # are we there?
                return node_id
            else:  # check subnodes
                for subnode in self.chain[node_id].succ:
                    if set(self.get_taxa(subnode)).issuperset(
                        taxon_set
                    ):  # taxon_set is downstream
                        node_id = subnode
                        break  # out of for loop
                else:
                    return -1  # taxon set was not with successors, for loop exhausted

    def is_bifurcating(self, node=None):
        """Return True if tree downstream of node is strictly bifurcating."""
        if node is None:
            node = self.root
        if (
            node == self.root and len(self.node(node).succ) == 3
        ):  # root can be trifurcating, because it has no ancestor
            return (
                self.is_bifurcating(self.node(node).succ[0])
                and self.is_bifurcating(self.node(node).succ[1])
                and self.is_bifurcating(self.node(node).succ[2])
            )
        if len(self.node(node).succ) == 2:
            return self.is_bifurcating(self.node(node).succ[0]) and self.is_bifurcating(
                self.node(node).succ[1]
            )
        elif len(self.node(node).succ) == 0:
            return True
        else:
            return False

    def branchlength2support(self):
        """Move values stored in data.branchlength to data.support, and set branchlength to 0.0.

        This is necessary when support has been stored as branchlength (e.g. paup), and has thus
        been read in as branchlength.
        """
        for n in self.chain:
            self.node(n).data.support = self.node(n).data.branchlength
            self.node(n).data.branchlength = 0.0

    def convert_absolute_support(self, nrep):
        """Convert absolute support (clade-count) to rel. frequencies.

        Some software (e.g. PHYLIP consense) just calculate how often clades appear, instead of
        calculating relative frequencies.
        """
        for n in self._walk():
            if self.node(n).data.support:
                self.node(n).data.support /= nrep

    def has_support(self, node=None):
        """Return True if any of the nodes has data.support != None."""
        for n in self._walk(node):
            if self.node(n).data.support:
                return True
        else:
            return False

    def randomize(
        self,
        ntax=None,
        taxon_list=None,
        branchlength=1.0,
        branchlength_sd=None,
        bifurcate=True,
    ):
        """Generate a random tree with ntax taxa and/or taxa from taxlabels.

        new_tree = randomize(self,ntax=None,taxon_list=None,branchlength=1.0,branchlength_sd=None,bifurcate=True)
        Trees are bifurcating by default. (Polytomies not yet supported).
        """
        if not ntax and taxon_list:
            ntax = len(taxon_list)
        elif not taxon_list and ntax:
            taxon_list = ["taxon" + str(i + 1) for i in range(ntax)]
        elif not ntax and not taxon_list:
            raise TreeError("Either number of taxa or list of taxa must be specified.")
        elif ntax != len(taxon_list):
            raise TreeError("Length of taxon list must correspond to ntax.")
        # initiate self with empty root
        self.__init__()
        terminals = self.get_terminals()
        # bifurcate randomly at terminal nodes until ntax is reached
        while len(terminals) < ntax:
            newsplit = random.choice(terminals)
            new_terminals = self.split(parent_id=newsplit, branchlength=branchlength)
            # if desired, give some variation to the branch length
            if branchlength_sd:
                for nt in new_terminals:
                    bl = random.gauss(branchlength, branchlength_sd)
                    if bl < 0:
                        bl = 0
                    self.node(nt).data.branchlength = bl
            terminals.extend(new_terminals)
            terminals.remove(newsplit)
        # distribute taxon labels randomly
        random.shuffle(taxon_list)
        for (node, name) in zip(terminals, taxon_list):
            self.node(node).data.taxon = name

    def display(self):
        """Quick and dirty lists of all nodes."""
        table = [
            ("#", "taxon", "prev", "succ", "brlen", "blen (sum)", "support", "comment")
        ]
        for i in self.all_ids():
            n = self.node(i)
            if not n.data:
                table.append(
                    (str(i), "-", str(n.prev), str(n.succ), "-", "-", "-", "-")
                )
            else:
                tx = n.data.taxon
                if not tx:
                    tx = "-"
                blength = f"{n.data.branchlength:0.2f}"
                if blength is None:
                    blength = "-"
                    sum_blength = "-"
                else:
                    sum_blength = f"{self.sum_branchlength(node=i):0.2f}"
                support = n.data.support
                if support is None:
                    support = "-"
                else:
                    support = f"{support:0.2f}"
                comment = n.data.comment
                if comment is None:
                    comment = "-"
                table.append(
                    (
                        str(i),
                        tx,
                        str(n.prev),
                        str(n.succ),
                        blength,
                        sum_blength,
                        support,
                        comment,
                    )
                )
        print(
            "\n".join("%3s %32s %15s %15s %8s %10s %8s %20s" % line for line in table)
        )
        print(f"\nRoot:  {self.root}")

    def to_string(
        self,
        support_as_branchlengths=False,
        branchlengths_only=False,
        plain=True,
        plain_newick=False,
        ladderize=None,
        ignore_comments=True,
    ):
        """Return a paup compatible tree line."""
        # if there's a conflict in the arguments, we override plain=True
        if support_as_branchlengths or branchlengths_only:
            plain = False
        self.support_as_branchlengths = support_as_branchlengths
        self.branchlengths_only = branchlengths_only
        self.ignore_comments = ignore_comments
        self.plain = plain

        def make_info_string(data, terminal=False):
            """Create nicely formatted support/branchlengths."""
            # CHECK FORMATTING
            if self.plain:  # plain tree only. That's easy.
                info_string = ""
            elif (
                self.support_as_branchlengths
            ):  # support as branchlengths (eg. PAUP), ignore actual branchlengths
                if terminal:  # terminal branches have 100% support
                    info_string = f":{self.max_support:1.2f}"
                elif data.support:
                    info_string = f":{data.support:1.2f}"
                else:
                    info_string = ":0.00"
            elif self.branchlengths_only:  # write only branchlengths, ignore support
                info_string = f":{data.branchlength:1.5f}"
            else:  # write support and branchlengths (e.g. .con tree of mrbayes)
                if terminal:
                    info_string = f":{data.branchlength:1.5f}"
                else:
                    if (
                        data.branchlength is not None and data.support is not None
                    ):  # we have blen and support
                        info_string = f"{data.support:1.2f}:{data.branchlength:1.5f}"
                    elif data.branchlength is not None:  # we have only blen
                        info_string = f"0.00000:{data.branchlength:1.5f}"
                    elif data.support is not None:  # we have only support
                        info_string = f"{data.support:1.2f}:0.00000"
                    else:
                        info_string = "0.00:0.00000"
            if not ignore_comments:
                try:
                    info_string = str(data.nodecomment) + info_string
                except AttributeError:
                    pass
            return info_string

        def ladderize_nodes(nodes, ladderize=None):
            """Sort node numbers according to the number of terminal nodes."""
            if ladderize in ["left", "LEFT", "right", "RIGHT"]:
                succnode_terminals = sorted(
                    (self.count_terminals(node=n), n) for n in nodes
                )
                if ladderize == "right" or ladderize == "RIGHT":
                    succnode_terminals.reverse()
                if succnode_terminals:
                    succnodes = list(zip(*succnode_terminals))[1]
                else:
                    succnodes = []
            else:
                succnodes = nodes
            return succnodes

        def newickize(node, ladderize=None):
            """Convert a node tree to a newick tree recursively."""
            if not self.node(node).succ:  # terminal
                return self.node(node).data.taxon + make_info_string(
                    self.node(node).data, terminal=True
                )
            else:
                succnodes = ladderize_nodes(self.node(node).succ, ladderize=ladderize)
                subtrees = [newickize(sn, ladderize=ladderize) for sn in succnodes]
                return f"({','.join(subtrees)}){make_info_string(self.node(node).data)}"

        treeline = ["tree"]
        if self.name:
            treeline.append(self.name)
        else:
            treeline.append("a_tree")
        treeline.append("=")
        if self.weight != 1:
            treeline.append(f"[&W{str(round(float(self.weight), 3))}]")
        if self.rooted:
            treeline.append("[&R]")
        succnodes = ladderize_nodes(self.node(self.root).succ)
        subtrees = [newickize(sn, ladderize=ladderize) for sn in succnodes]
        treeline.append(f"({','.join(subtrees)})")
        if plain_newick:
            return treeline[-1]
        else:
            return " ".join(treeline) + ";"

    def __str__(self):
        """Short version of to_string(), gives plain tree."""
        return self.to_string(plain=True)

    def unroot(self):
        """Define a unrooted Tree structure, using data of a rooted Tree."""
        # travel down the rooted tree structure and save all branches and the nodes they connect

        def _get_branches(node):
            branches = []
            for b in self.node(node).succ:
                branches.append(
                    [node, b, self.node(b).data.branchlength, self.node(b).data.support]
                )
                branches.extend(_get_branches(b))
            return branches

        self.unrooted = _get_branches(self.root)
        # if root is bifurcating, then it is eliminated
        if len(self.node(self.root).succ) == 2:
            # find the two branches that connect to root
            rootbranches = [b for b in self.unrooted if self.root in b[:2]]
            b1 = self.unrooted.pop(self.unrooted.index(rootbranches[0]))
            b2 = self.unrooted.pop(self.unrooted.index(rootbranches[1]))
            # Connect them two each other. If both have support, it should be identical (or one set to None?).
            # If both have branchlengths, they will be added
            newbranch = [b1[1], b2[1], b1[2] + b2[2]]
            if b1[3] is None:
                newbranch.append(
                    b2[3]
                )  # either None (both rootbranches are unsupported) or some support
            elif b2[3] is None:
                newbranch.append(b1[3])  # dito
            elif b1[3] == b2[3]:
                newbranch.append(b1[3])  # identical support
            elif b1[3] == 0 or b2[3] == 0:
                newbranch.append(b1[3] + b2[3])  # one is 0, take the other
            else:
                raise TreeError(
                    "Support mismatch in bifurcating root: %f, %f"
                    % (float(b1[3]), float(b2[3]))
                )
            self.unrooted.append(newbranch)

    def root_with_outgroup(self, outgroup=None):
        """Define a tree's root with a reference group outgroup."""

        def _connect_subtree(parent, child):
            """Attach subtree starting with node child to parent (PRIVATE)."""
            for i, branch in enumerate(self.unrooted):
                if parent in branch[:2] and child in branch[:2]:
                    branch = self.unrooted.pop(i)
                    break
            else:
                raise TreeError(
                    "Unable to connect nodes for rooting: nodes %d and %d are not connected"
                    % (parent, child)
                )
            self.link(parent, child)
            self.node(child).data.branchlength = branch[2]
            self.node(child).data.support = branch[3]
            # now check if there are more branches connected to the child, and if so, connect them
            child_branches = [b for b in self.unrooted if child in b[:2]]
            for b in child_branches:
                if child == b[0]:
                    succ = b[1]
                else:
                    succ = b[0]
                _connect_subtree(child, succ)

        # check the outgroup we're supposed to root with
        if outgroup is None:
            return self.root
        outgroup_node = self.is_monophyletic(outgroup)
        if outgroup_node == -1:
            return -1
        # if tree is already rooted with outgroup on a bifurcating root,
        # or the outgroup includes all taxa on the tree, then we're fine
        if (
            len(self.node(self.root).succ) == 2
            and outgroup_node in self.node(self.root).succ
        ) or outgroup_node == self.root:
            return self.root

        self.unroot()
        # now we find the branch that connects outgroup and ingroup
        # print(self.node(outgroup_node).prev)
        for i, b in enumerate(self.unrooted):
            if outgroup_node in b[:2] and self.node(outgroup_node).prev in b[:2]:
                root_branch = self.unrooted.pop(i)
                break
        else:
            raise TreeError("Unrooted and rooted Tree do not match")
        if outgroup_node == root_branch[1]:
            ingroup_node = root_branch[0]
        else:
            ingroup_node = root_branch[1]
        # now we destroy the old tree structure, but keep node data. Nodes will be reconnected according to new outgroup
        for n in self.all_ids():
            self.node(n).prev = None
            self.node(n).succ = []
        # now we just add both subtrees (outgroup and ingroup) branch for branch
        root = Nodes.Node(data=NodeData())  # new root
        self.add(root)  # add to tree description
        self.root = root.id  # set as root
        self.unrooted.append(
            [root.id, ingroup_node, root_branch[2], root_branch[3]]
        )  # add branch to ingroup to unrooted tree
        self.unrooted.append(
            [root.id, outgroup_node, 0.0, 0.0]
        )  # add branch to outgroup to unrooted tree
        _connect_subtree(root.id, ingroup_node)  # add ingroup
        _connect_subtree(root.id, outgroup_node)  # add outgroup
        # if there's still a lonely node in self.chain, then it's the old root, and we delete it
        oldroot = [
            i for i in self.all_ids() if self.node(i).prev is None and i != self.root
        ]
        if len(oldroot) > 1:
            raise TreeError(f"Isolated nodes in tree description: {','.join(oldroot)}")
        elif len(oldroot) == 1:
            self.kill(oldroot[0])
        return self.root

    def merge_with_support(
        self, bstrees=None, constree=None, threshold=0.5, outgroup=None
    ):
        """Merge clade support (from consensus or list of bootstrap-trees) with phylogeny.

        tree=merge_bootstrap(phylo,bs_tree=<list_of_trees>)
        or
        tree=merge_bootstrap(phylo,consree=consensus_tree with clade support)
        """
        if bstrees and constree:
            raise TreeError(
                "Specify either list of bootstrap trees or consensus tree, not both"
            )
        if not (bstrees or constree):
            raise TreeError("Specify either list of bootstrap trees or consensus tree.")
        # no outgroup specified: use the smallest clade of the root
        if outgroup is None:
            try:
                succnodes = self.node(self.root).succ
                smallest = min((len(self.get_taxa(n)), n) for n in succnodes)
                outgroup = self.get_taxa(smallest[1])
            except Exception:
                raise TreeError("Error determining outgroup.") from None
        else:  # root with user specified outgroup
            self.root_with_outgroup(outgroup)

        if bstrees:  # calculate consensus
            constree = consensus(bstrees, threshold=threshold, outgroup=outgroup)
        else:
            if not constree.has_support():
                constree.branchlength2support()
            constree.root_with_outgroup(outgroup)
        # now we travel all nodes, and add support from consensus, if the clade is present in both
        for pnode in self._walk():
            cnode = constree.is_monophyletic(self.get_taxa(pnode))
            if cnode > -1:
                self.node(pnode).data.support = constree.node(cnode).data.support


def consensus(trees, threshold=0.5, outgroup=None):
    """Compute a majority rule consensus tree of all clades with relative frequency>=threshold from a list of trees."""
    total = len(trees)
    if total == 0:
        return None
    # shouldn't we make sure that it's NodeData or subclass??
    dataclass = trees[0].dataclass
    max_support = trees[0].max_support
    clades = {}
    # countclades={}
    alltaxa = set(trees[0].get_taxa())
    # calculate calde frequencies
    for t in trees:
        if alltaxa != set(t.get_taxa()):
            raise TreeError("Trees for consensus must contain the same taxa")
        t.root_with_outgroup(outgroup=outgroup)
        for st_node in t._walk(t.root):
            subclade_taxa = sorted(t.get_taxa(st_node))
            subclade_taxa = str(subclade_taxa)  # lists are not hashable
            if subclade_taxa in clades:
                clades[subclade_taxa] += t.weight / total
            else:
                clades[subclade_taxa] = t.weight / total
            # if subclade_taxa in countclades:
            #    countclades[subclade_taxa]+=t.weight
            # else:
            #    countclades[subclade_taxa]=t.weight
    # weed out clades below threshold
    delclades = [
        c for c, p in clades.items() if round(p, 3) < threshold
    ]  # round can be necessary
    for c in delclades:
        del clades[c]
    # create a tree with a root node
    consensus = Tree(name=f"consensus_{float(threshold):2.1f}", data=dataclass)
    # each clade needs a node in the new tree, add them as isolated nodes
    for c, s in clades.items():
        node = Nodes.Node(data=dataclass())
        node.data.support = s
        node.data.taxon = set(eval(c))
        consensus.add(node)
    # set root node data
    consensus.node(consensus.root).data.support = None
    consensus.node(consensus.root).data.taxon = alltaxa
    # we sort the nodes by no. of taxa in the clade, so root will be the last
    consensus_ids = consensus.all_ids()
    consensus_ids.sort(key=lambda x: len(consensus.node(x).data.taxon))
    # now we just have to hook each node to the next smallest node that includes all taxa of the current
    for i, current in enumerate(
        consensus_ids[:-1]
    ):  # skip the last one which is the root
        # print('----')
        # print('current: %s' % consensus.node(current).data.taxon)
        # search remaining nodes
        for parent in consensus_ids[i + 1 :]:
            # print('parent: %s' % consensus.node(parent).data.taxon)
            if consensus.node(parent).data.taxon.issuperset(
                consensus.node(current).data.taxon
            ):
                break
        else:
            sys.exit("corrupt tree structure?")
        # internal nodes don't have taxa
        if len(consensus.node(current).data.taxon) == 1:
            consensus.node(current).data.taxon = consensus.node(
                current
            ).data.taxon.pop()
            # reset the support for terminal nodes to maximum
            # consensus.node(current).data.support=max_support
        else:
            consensus.node(current).data.taxon = None
        consensus.link(parent, current)
    # eliminate root taxon name
    consensus.node(consensus_ids[-1]).data.taxon = None
    if alltaxa != set(consensus.get_taxa()):
        raise TreeError("FATAL ERROR: consensus tree is corrupt")
    return consensus