File size: 18,337 Bytes
b7731cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
# Copyright (C) 2002, Thomas Hamelryck ([email protected])
#
# This file is part of the Biopython distribution and governed by your
# choice of the "Biopython License Agreement" or the "BSD 3-Clause License".
# Please see the LICENSE file that should have been included as part of this
# package.

"""Atom class, used in Structure objects."""

import copy
import sys
import warnings

import numpy as np

from Bio.PDB.Entity import DisorderedEntityWrapper
from Bio.PDB.PDBExceptions import PDBConstructionWarning
from Bio.PDB.vectors import Vector
from Bio.Data import IUPACData


class Atom:
    """Define Atom class.

    The Atom object stores atom name (both with and without spaces),
    coordinates, B factor, occupancy, alternative location specifier
    and (optionally) anisotropic B factor and standard deviations of
    B factor and positions.

    In the case of PQR files, B factor and occupancy are replaced by
    atomic charge and radius.
    """

    def __init__(
        self,
        name,
        coord,
        bfactor,
        occupancy,
        altloc,
        fullname,
        serial_number,
        element=None,
        pqr_charge=None,
        radius=None,
    ):
        """Initialize Atom object.

        :param name: atom name (eg. "CA"). Note that spaces are normally stripped.
        :type name: string

        :param coord: atomic coordinates (x,y,z)
        :type coord: Numeric array (Float0, size 3)

        :param bfactor: isotropic B factor
        :type bfactor: number

        :param occupancy: occupancy (0.0-1.0)
        :type occupancy: number

        :param altloc: alternative location specifier for disordered atoms
        :type altloc: string

        :param fullname: full atom name, including spaces, e.g. " CA ". Normally
                         these spaces are stripped from the atom name.
        :type fullname: string

        :param element: atom element, e.g. "C" for Carbon, "HG" for mercury,
        :type element: uppercase string (or None if unknown)

        :param pqr_charge: atom charge
        :type pqr_charge: number

        :param radius: atom radius
        :type radius: number
        """
        self.level = "A"
        # Reference to the residue
        self.parent = None
        # the atomic data
        self.name = name  # eg. CA, spaces are removed from atom name
        self.fullname = fullname  # e.g. " CA ", spaces included
        self.coord = coord
        self.bfactor = bfactor
        self.occupancy = occupancy
        self.altloc = altloc
        self.full_id = None  # (structure id, model id, chain id, residue id, atom id)
        self.id = name  # id of atom is the atom name (e.g. "CA")
        self.disordered_flag = 0
        self.anisou_array = None
        self.siguij_array = None
        self.sigatm_array = None
        self.serial_number = serial_number
        # Dictionary that keeps additional properties
        self.xtra = {}
        assert not element or element == element.upper(), element
        self.element = self._assign_element(element)
        self.mass = self._assign_atom_mass()
        self.pqr_charge = pqr_charge
        self.radius = radius

        # For atom sorting (protein backbone atoms first)
        self._sorting_keys = {"N": 0, "CA": 1, "C": 2, "O": 3}

    # Sorting Methods
    # standard across different objects and allows direct comparison
    def __eq__(self, other):
        """Test equality."""
        if isinstance(other, Atom):
            return self.full_id[1:] == other.full_id[1:]
        else:
            return NotImplemented

    def __ne__(self, other):
        """Test inequality."""
        if isinstance(other, Atom):
            return self.full_id[1:] != other.full_id[1:]
        else:
            return NotImplemented

    def __gt__(self, other):
        """Test greater than."""
        if isinstance(other, Atom):
            if self.parent != other.parent:
                return self.parent > other.parent
            order_s = self._sorting_keys.get(self.name, 4)
            order_o = self._sorting_keys.get(other.name, 4)
            if order_s != order_o:
                return order_s > order_o
            elif self.name != other.name:
                return self.name > other.name
            else:
                return self.altloc > other.altloc
        else:
            return NotImplemented

    def __ge__(self, other):
        """Test greater or equal."""
        if isinstance(other, Atom):
            if self.parent != other.parent:
                return self.parent >= other.parent
            order_s = self._sorting_keys.get(self.name, 4)
            order_o = self._sorting_keys.get(other.name, 4)
            if order_s != order_o:
                return order_s >= order_o
            elif self.name != other.name:
                return self.name >= other.name
            else:
                return self.altloc >= other.altloc
        else:
            return NotImplemented

    def __lt__(self, other):
        """Test less than."""
        if isinstance(other, Atom):
            if self.parent != other.parent:
                return self.parent < other.parent
            order_s = self._sorting_keys.get(self.name, 4)
            order_o = self._sorting_keys.get(other.name, 4)
            if order_s != order_o:
                return order_s < order_o
            elif self.name != other.name:
                return self.name < other.name
            else:
                return self.altloc < other.altloc
        else:
            return NotImplemented

    def __le__(self, other):
        """Test less or equal."""
        if isinstance(other, Atom):
            if self.parent != other.parent:
                return self.parent <= other.parent
            order_s = self._sorting_keys.get(self.name, 4)
            order_o = self._sorting_keys.get(other.name, 4)
            if order_s != order_o:
                return order_s <= order_o
            elif self.name != other.name:
                return self.name <= other.name
            else:
                return self.altloc <= other.altloc
        else:
            return NotImplemented

    # Hash method to allow uniqueness (set)
    def __hash__(self):
        """Return atom full identifier."""
        return hash(self.get_full_id())

    def _assign_element(self, element):
        """Guess element from atom name if not recognised (PRIVATE).

        There is little documentation about extracting/encoding element
        information in atom names, but some conventions seem to prevail:

            - C, N, O, S, H, P, F atom names start with a blank space (e.g. " CA ")
              unless the name is 4 characters long (e.g. HE21 in glutamine). In both
              these cases, the element is the first character.

            - Inorganic elements do not have a blank space (e.g. "CA  " for calcium)
              but one must check the full name to differentiate between e.g. helium
              ("HE  ") and long-name hydrogens (e.g. "HE21").

            - Atoms with unknown or ambiguous elements are marked with 'X', e.g.
              PDB 4cpa. If we fail to identify an element, we should mark it as
              such.

        """
        if not element or element.capitalize() not in IUPACData.atom_weights:
            if self.fullname[0].isalpha() and not self.fullname[2:].isdigit():
                putative_element = self.name.strip()
            else:
                # Hs may have digit in [0]
                if self.name[0].isdigit():
                    putative_element = self.name[1]
                else:
                    putative_element = self.name[0]

            if putative_element.capitalize() in IUPACData.atom_weights:
                msg = "Used element %r for Atom (name=%s) with given element %r" % (
                    putative_element,
                    self.name,
                    element,
                )
                element = putative_element
            else:
                msg = (
                    "Could not assign element %r for Atom (name=%s) with given element %r"
                    % (putative_element, self.name, element)
                )
                element = "X"  # mark as unknown/ambiguous
            warnings.warn(msg, PDBConstructionWarning)

        return element

    def _assign_atom_mass(self):
        """Return atom weight (PRIVATE)."""
        try:
            return IUPACData.atom_weights[self.element.capitalize()]
        except (AttributeError, KeyError):
            return float("NaN")

    # Special methods

    def __repr__(self):
        """Print Atom object as <Atom atom_name>."""
        return f"<Atom {self.get_id()}>"

    def __sub__(self, other):
        """Calculate distance between two atoms.

        :param other: the other atom
        :type other: L{Atom}

        Examples
        --------
        This is an incomplete but illustrative example::

            distance = atom1 - atom2

        """
        diff = self.coord - other.coord
        return np.sqrt(np.dot(diff, diff))

    # set methods

    def set_serial_number(self, n):
        """Set serial number."""
        self.serial_number = n

    def set_bfactor(self, bfactor):
        """Set isotroptic B factor."""
        self.bfactor = bfactor

    def set_coord(self, coord):
        """Set coordinates."""
        self.coord = coord

    def set_altloc(self, altloc):
        """Set alternative location specifier."""
        self.altloc = altloc

    def set_occupancy(self, occupancy):
        """Set occupancy."""
        self.occupancy = occupancy

    def set_sigatm(self, sigatm_array):
        """Set standard deviation of atomic parameters.

        The standard deviation of atomic parameters consists
        of 3 positional, 1 B factor and 1 occupancy standard
        deviation.

        :param sigatm_array: standard deviations of atomic parameters.
        :type sigatm_array: Numeric array (length 5)
        """
        self.sigatm_array = sigatm_array

    def set_siguij(self, siguij_array):
        """Set standard deviations of anisotropic temperature factors.

        :param siguij_array: standard deviations of anisotropic temperature factors.
        :type siguij_array: Numeric array (length 6)
        """
        self.siguij_array = siguij_array

    def set_anisou(self, anisou_array):
        """Set anisotropic B factor.

        :param anisou_array: anisotropic B factor.
        :type anisou_array: Numeric array (length 6)
        """
        self.anisou_array = anisou_array

    def set_charge(self, pqr_charge):
        """Set charge."""
        self.pqr_charge = pqr_charge

    def set_radius(self, radius):
        """Set radius."""
        self.radius = radius

    # Public methods

    def flag_disorder(self):
        """Set the disordered flag to 1.

        The disordered flag indicates whether the atom is disordered or not.
        """
        self.disordered_flag = 1

    def is_disordered(self):
        """Return the disordered flag (1 if disordered, 0 otherwise)."""
        return self.disordered_flag

    def set_parent(self, parent):
        """Set the parent residue.

        Arguments:
         - parent - Residue object

        """
        self.parent = parent
        self.full_id = self.get_full_id()

    def detach_parent(self):
        """Remove reference to parent."""
        self.parent = None

    def get_sigatm(self):
        """Return standard deviation of atomic parameters."""
        return self.sigatm_array

    def get_siguij(self):
        """Return standard deviations of anisotropic temperature factors."""
        return self.siguij_array

    def get_anisou(self):
        """Return anisotropic B factor."""
        return self.anisou_array

    def get_parent(self):
        """Return parent residue."""
        return self.parent

    def get_serial_number(self):
        """Return the serial number."""
        return self.serial_number

    def get_name(self):
        """Return atom name."""
        return self.name

    def get_id(self):
        """Return the id of the atom (which is its atom name)."""
        return self.id

    def get_full_id(self):
        """Return the full id of the atom.

        The full id of an atom is a tuple used to uniquely identify
        the atom and consists of the following elements:
        (structure id, model id, chain id, residue id, atom name, altloc)
        """
        try:
            return self.parent.get_full_id() + ((self.name, self.altloc),)
        except AttributeError:
            return (None, None, None, None, self.name, self.altloc)

    def get_coord(self):
        """Return atomic coordinates."""
        return self.coord

    def get_bfactor(self):
        """Return B factor."""
        return self.bfactor

    def get_occupancy(self):
        """Return occupancy."""
        return self.occupancy

    def get_fullname(self):
        """Return the atom name, including leading and trailing spaces."""
        return self.fullname

    def get_altloc(self):
        """Return alternative location specifier."""
        return self.altloc

    def get_level(self):
        """Return level."""
        return self.level

    def get_charge(self):
        """Return charge."""
        return self.pqr_charge

    def get_radius(self):
        """Return radius."""
        return self.radius

    def transform(self, rot, tran):
        """Apply rotation and translation to the atomic coordinates.

        :param rot: A right multiplying rotation matrix
        :type rot: 3x3 Numeric array

        :param tran: the translation vector
        :type tran: size 3 Numeric array

        Examples
        --------
        This is an incomplete but illustrative example::

            from numpy import pi, array
            from Bio.PDB.vectors import Vector, rotmat
            rotation = rotmat(pi, Vector(1, 0, 0))
            translation = array((0, 0, 1), 'f')
            atom.transform(rotation, translation)

        """
        self.coord = np.dot(self.coord, rot) + tran

    def get_vector(self):
        """Return coordinates as Vector.

        :return: coordinates as 3D vector
        :rtype: Bio.PDB.Vector class
        """
        x, y, z = self.coord
        return Vector(x, y, z)

    def copy(self):
        """Create a copy of the Atom.

        Parent information is lost.
        """
        # Do a shallow copy then explicitly copy what needs to be deeper.
        shallow = copy.copy(self)
        shallow.detach_parent()
        shallow.set_coord(copy.copy(self.get_coord()))
        shallow.xtra = self.xtra.copy()
        return shallow


class DisorderedAtom(DisorderedEntityWrapper):
    """Contains all Atom objects that represent the same disordered atom.

    One of these atoms is "selected" and all method calls not caught
    by DisorderedAtom are forwarded to the selected Atom object. In that way, a
    DisorderedAtom behaves exactly like a normal Atom. By default, the selected
    Atom object represents the Atom object with the highest occupancy, but a
    different Atom object can be selected by using the disordered_select(altloc)
    method.
    """

    def __init__(self, id):
        """Create DisorderedAtom.

        Arguments:
         - id - string, atom name

        """
        # TODO - make this a private attribute?
        self.last_occupancy = -sys.maxsize
        DisorderedEntityWrapper.__init__(self, id)

    # Special methods
    # Override parent class __iter__ method
    def __iter__(self):
        """Iterate through disordered atoms."""
        yield from self.disordered_get_list()

    def __repr__(self):
        """Return disordered atom identifier."""
        if self.child_dict:
            return f"<DisorderedAtom {self.get_id()}>"
        else:
            return f"<Empty DisorderedAtom {self.get_id()}>"

    # This is a separate method from Entity.center_of_mass since DisorderedAtoms
    # will be unpacked by Residue.get_unpacked_list(). Here we allow for a very
    # specific use case that is much simpler than the general implementation.
    def center_of_mass(self):
        """Return the center of mass of the DisorderedAtom as a numpy array.

        Assumes all child atoms have the same mass (same element).
        """
        children = self.disordered_get_list()

        if not children:
            raise ValueError(f"{self} does not have children")

        coords = np.asarray([a.coord for a in children], dtype=np.float32)
        return np.average(coords, axis=0, weights=None)

    def disordered_get_list(self):
        """Return list of atom instances.

        Sorts children by altloc (empty, then alphabetical).
        """
        return sorted(self.child_dict.values(), key=lambda a: ord(a.altloc))

    def disordered_add(self, atom):
        """Add a disordered atom."""
        # Add atom to dict, use altloc as key
        atom.flag_disorder()
        # set the residue parent of the added atom
        residue = self.get_parent()
        atom.set_parent(residue)
        altloc = atom.get_altloc()
        occupancy = atom.get_occupancy()
        self[altloc] = atom
        if occupancy > self.last_occupancy:
            self.last_occupancy = occupancy
            self.disordered_select(altloc)

    def disordered_remove(self, altloc):
        """Remove a child atom altloc from the DisorderedAtom.

        Arguments:
         - altloc - name of the altloc to remove, as a string.

        """
        # Get child altloc
        atom = self.child_dict[altloc]
        is_selected = self.selected_child is atom

        # Detach
        del self.child_dict[altloc]
        atom.detach_parent()

        if is_selected and self.child_dict:  # pick next highest occupancy
            child = sorted(self.child_dict.values(), key=lambda a: a.occupancy)[-1]
            self.disordered_select(child.altloc)
        elif not self.child_dict:
            self.selected_child = None
            self.last_occupancy = -sys.maxsize

    def transform(self, rot, tran):
        """Apply rotation and translation to all children.

        See the documentation of Atom.transform for details.
        """
        for child in self:
            child.coord = np.dot(child.coord, rot) + tran