File size: 22,268 Bytes
b7731cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
# Copyright (C) 2002, Thomas Hamelryck ([email protected])
# Copyright (C) 2017, Joao Rodrigues ([email protected])
#
# This file is part of the Biopython distribution and governed by your
# choice of the "Biopython License Agreement" or the "BSD 3-Clause License".
# Please see the LICENSE file that should have been included as part of this
# package.

"""Calculation of residue depth using command line tool MSMS.

This module uses Michel Sanner's MSMS program for the surface calculation.
See: http://mgltools.scripps.edu/packages/MSMS

Residue depth is the average distance of the atoms of a residue from
the solvent accessible surface.

Residue Depth::

    from Bio.PDB.ResidueDepth import ResidueDepth
    from Bio.PDB.PDBParser import PDBParser
    parser = PDBParser()
    structure = parser.get_structure("1a8o", "Tests/PDB/1A8O.pdb")
    model = structure[0]
    rd = ResidueDepth(model)
    print(rd['A',(' ', 152, ' ')])

Direct MSMS interface, typical use::

    from Bio.PDB.ResidueDepth import get_surface
    surface = get_surface(model)

The surface is a Numeric array with all the surface vertices.

Distance to surface::

    from Bio.PDB.ResidueDepth import min_dist
    coord = (1.113, 35.393,  9.268)
    dist = min_dist(coord, surface)

where coord is the coord of an atom within the volume bound by
the surface (ie. atom depth).

To calculate the residue depth (average atom depth of the atoms
in a residue)::

    from Bio.PDB.ResidueDepth import residue_depth
    chain = model['A']
    res152 = chain[152]
    rd = residue_depth(res152, surface)

"""

import os
import subprocess
import tempfile
import warnings

import numpy

from Bio.PDB import PDBParser
from Bio.PDB import Selection
from Bio.PDB.AbstractPropertyMap import AbstractPropertyMap
from Bio.PDB.Polypeptide import is_aa

from Bio import BiopythonWarning

# Table 1: Atom Type to radius
_atomic_radii = {
    #   atom num dist  Rexplicit Runited-atom
    1: (0.57, 1.40, 1.40),
    2: (0.66, 1.40, 1.60),
    3: (0.57, 1.40, 1.40),
    4: (0.70, 1.54, 1.70),
    5: (0.70, 1.54, 1.80),
    6: (0.70, 1.54, 2.00),
    7: (0.77, 1.74, 2.00),
    8: (0.77, 1.74, 2.00),
    9: (0.77, 1.74, 2.00),
    10: (0.67, 1.74, 1.74),
    11: (0.70, 1.74, 1.86),
    12: (1.04, 1.80, 1.85),
    13: (1.04, 1.80, 1.80),  # P, S, and LonePairs
    14: (0.70, 1.54, 1.54),  # non-protonated nitrogens
    15: (0.37, 1.20, 1.20),  # H, D  hydrogen and deuterium
    16: (0.70, 0.00, 1.50),  # obsolete entry, purpose unknown
    17: (3.50, 5.00, 5.00),  # pseudoatom - big ball
    18: (1.74, 1.97, 1.97),  # Ca calcium
    19: (1.25, 1.40, 1.40),  # Zn zinc    (traditional radius)
    20: (1.17, 1.40, 1.40),  # Cu copper  (traditional radius)
    21: (1.45, 1.30, 1.30),  # Fe heme iron
    22: (1.41, 1.49, 1.49),  # Cd cadmium
    23: (0.01, 0.01, 0.01),  # pseudoatom - tiny dot
    24: (0.37, 1.20, 0.00),  # hydrogen vanishing if united-atoms
    25: (1.16, 1.24, 1.24),  # Fe not in heme
    26: (1.36, 1.60, 1.60),  # Mg magnesium
    27: (1.17, 1.24, 1.24),  # Mn manganese
    28: (1.16, 1.25, 1.25),  # Co cobalt
    29: (1.17, 2.15, 2.15),  # Se selenium
    30: (3.00, 3.00, 3.00),  # obsolete entry, original purpose unknown
    31: (1.15, 1.15, 1.15),  # Yb ytterbium +3 ion --- wild guess only
    38: (0.95, 1.80, 1.80),  # obsolete entry, original purpose unknown
}

# Table 2: Resname/Aname to Atom Type
# MSMS uses an awk/gawk pattern matching strategy that we cannot replicate
# We will take advantage of our parser to help us in the mapping.


def _get_atom_radius(atom, rtype="united"):
    """Translate an atom object to an atomic radius defined in MSMS (PRIVATE).

    Uses information from the parent residue and the atom object to define
    the atom type.

    Returns the radius (float) according to the selected type:
     - explicit (reads hydrogens)
     - united (default)

    """
    if rtype == "explicit":
        typekey = 1
    elif rtype == "united":
        typekey = 2
    else:
        raise ValueError(
            f"Radius type ({rtype!r}) not understood. Must be 'explicit' or 'united'"
        )

    resname = atom.parent.resname
    het_atm = atom.parent.id[0]

    at_name = atom.name
    at_elem = atom.element

    # Hydrogens
    if at_elem == "H" or at_elem == "D":
        return _atomic_radii[15][typekey]
    # HETATMs
    elif het_atm == "W" and at_elem == "O":
        return _atomic_radii[2][typekey]
    elif het_atm != " " and at_elem == "CA":
        return _atomic_radii[18][typekey]
    elif het_atm != " " and at_elem == "CD":
        return _atomic_radii[22][typekey]
    elif resname == "ACE" and at_name == "CA":
        return _atomic_radii[9][typekey]
    # Main chain atoms
    elif at_name == "N":
        return _atomic_radii[4][typekey]
    elif at_name == "CA":
        return _atomic_radii[7][typekey]
    elif at_name == "C":
        return _atomic_radii[10][typekey]
    elif at_name == "O":
        return _atomic_radii[1][typekey]
    elif at_name == "P":
        return _atomic_radii[13][typekey]
    # CB atoms
    elif at_name == "CB" and resname == "ALA":
        return _atomic_radii[9][typekey]
    elif at_name == "CB" and resname in {"ILE", "THR", "VAL"}:
        return _atomic_radii[7][typekey]
    elif at_name == "CB":
        return _atomic_radii[8][typekey]
    # CG atoms
    elif at_name == "CG" and resname in {
        "ASN",
        "ASP",
        "ASX",
        "HIS",
        "HIP",
        "HIE",
        "HID",
        "HISN",
        "HISL",
        "LEU",
        "PHE",
        "TRP",
        "TYR",
    }:
        return _atomic_radii[10][typekey]
    elif at_name == "CG" and resname == "LEU":
        return _atomic_radii[7][typekey]
    elif at_name == "CG":
        return _atomic_radii[8][typekey]
    # General amino acids in alphabetical order
    elif resname == "GLN" and at_elem == "O":
        return _atomic_radii[3][typekey]
    elif resname == "ACE" and at_name == "CH3":
        return _atomic_radii[9][typekey]
    elif resname == "ARG" and at_name == "CD":
        return _atomic_radii[8][typekey]
    elif resname == "ARG" and at_name in {"NE", "RE"}:
        return _atomic_radii[4][typekey]
    elif resname == "ARG" and at_name == "CZ":
        return _atomic_radii[10][typekey]
    elif resname == "ARG" and at_name.startswith(("NH", "RH")):
        return _atomic_radii[5][typekey]
    elif resname == "ASN" and at_name == "OD1":
        return _atomic_radii[1][typekey]
    elif resname == "ASN" and at_name == "ND2":
        return _atomic_radii[5][typekey]
    elif resname == "ASN" and at_name.startswith("AD"):
        return _atomic_radii[3][typekey]
    elif resname == "ASP" and at_name.startswith(("OD", "ED")):
        return _atomic_radii[3][typekey]
    elif resname == "ASX" and at_name.startswith("OD1"):
        return _atomic_radii[1][typekey]
    elif resname == "ASX" and at_name == "ND2":
        return _atomic_radii[3][typekey]
    elif resname == "ASX" and at_name.startswith(("OD", "AD")):
        return _atomic_radii[3][typekey]
    elif resname in {"CYS", "CYX", "CYM"} and at_name == "SG":
        return _atomic_radii[13][typekey]
    elif resname in {"CYS", "MET"} and at_name.startswith("LP"):
        return _atomic_radii[13][typekey]
    elif resname == "CUH" and at_name == "SG":
        return _atomic_radii[12][typekey]
    elif resname == "GLU" and at_name.startswith(("OE", "EE")):
        return _atomic_radii[3][typekey]
    elif resname in {"GLU", "GLN", "GLX"} and at_name == "CD":
        return _atomic_radii[10][typekey]
    elif resname == "GLN" and at_name == "OE1":
        return _atomic_radii[1][typekey]
    elif resname == "GLN" and at_name == "NE2":
        return _atomic_radii[5][typekey]
    elif resname in {"GLN", "GLX"} and at_name.startswith("AE"):
        return _atomic_radii[3][typekey]
    # Histdines and friends
    # There are 4 kinds of HIS rings: HIS (no protons), HID (proton on Delta),
    #   HIE (proton on epsilon), and HIP (protons on both)
    # Protonated nitrogens are numbered 4, else 14
    # HIS is treated here as the same as HIE
    #
    # HISL is a deprotonated HIS (the L means liganded)
    elif resname in {"HIS", "HID", "HIE", "HIP", "HISL"} and at_name in {"CE1", "CD2"}:
        return _atomic_radii[11][typekey]
    elif resname in {"HIS", "HID", "HIE", "HISL"} and at_name == "ND1":
        return _atomic_radii[14][typekey]
    elif resname in {"HID", "HIP"} and at_name in {"ND1", "RD1"}:
        return _atomic_radii[4][typekey]
    elif resname in {"HIS", "HIE", "HIP"} and at_name in {"NE2", "RE2"}:
        return _atomic_radii[4][typekey]
    elif resname in {"HID", "HISL"} and at_name in {"NE2", "RE2"}:
        return _atomic_radii[14][typekey]
    elif resname in {"HIS", "HID", "HIP", "HISL"} and at_name.startswith(("AD", "AE")):
        return _atomic_radii[4][typekey]
    # More amino acids
    elif resname == "ILE" and at_name == "CG1":
        return _atomic_radii[8][typekey]
    elif resname == "ILE" and at_name == "CG2":
        return _atomic_radii[9][typekey]
    elif resname == "ILE" and at_name in {"CD", "CD1"}:
        return _atomic_radii[9][typekey]
    elif resname == "LEU" and at_name.startswith("CD"):
        return _atomic_radii[9][typekey]
    elif resname == "LYS" and at_name in {"CG", "CD", "CE"}:
        return _atomic_radii[8][typekey]
    elif resname == "LYS" and at_name in {"NZ", "KZ"}:
        return _atomic_radii[6][typekey]
    elif resname == "MET" and at_name == "SD":
        return _atomic_radii[13][typekey]
    elif resname == "MET" and at_name == "CE":
        return _atomic_radii[9][typekey]
    elif resname == "PHE" and at_name.startswith(("CD", "CE", "CZ")):
        return _atomic_radii[11][typekey]
    elif resname == "PRO" and at_name in {"CG", "CD"}:
        return _atomic_radii[8][typekey]
    elif resname == "CSO" and at_name in {"SE", "SEG"}:
        return _atomic_radii[9][typekey]
    elif resname == "CSO" and at_name.startswith("OD"):
        return _atomic_radii[3][typekey]
    elif resname == "SER" and at_name == "OG":
        return _atomic_radii[2][typekey]
    elif resname == "THR" and at_name == "OG1":
        return _atomic_radii[2][typekey]
    elif resname == "THR" and at_name == "CG2":
        return _atomic_radii[9][typekey]
    elif resname == "TRP" and at_name == "CD1":
        return _atomic_radii[11][typekey]
    elif resname == "TRP" and at_name in {"CD2", "CE2"}:
        return _atomic_radii[10][typekey]
    elif resname == "TRP" and at_name == "NE1":
        return _atomic_radii[4][typekey]
    elif resname == "TRP" and at_name in {"CE3", "CZ2", "CZ3", "CH2"}:
        return _atomic_radii[11][typekey]
    elif resname == "TYR" and at_name in {"CD1", "CD2", "CE1", "CE2"}:
        return _atomic_radii[11][typekey]
    elif resname == "TYR" and at_name == "CZ":
        return _atomic_radii[10][typekey]
    elif resname == "TYR" and at_name == "OH":
        return _atomic_radii[2][typekey]
    elif resname == "VAL" and at_name in {"CG1", "CG2"}:
        return _atomic_radii[9][typekey]
    elif at_name in {"CD", "CD"}:
        return _atomic_radii[8][typekey]
    # Co-factors, and other weirdos
    elif (
        resname in {"FS3", "FS4"}
        and at_name.startswith("FE")
        and at_name.endswith(("1", "2", "3", "4", "5", "6", "7"))
    ):
        return _atomic_radii[21][typekey]
    elif (
        resname in {"FS3", "FS4"}
        and at_name.startswith("S")
        and at_name.endswith(("1", "2", "3", "4", "5", "6", "7"))
    ):
        return _atomic_radii[13][typekey]
    elif resname == "FS3" and at_name == "OXO":
        return _atomic_radii[1][typekey]
    elif resname == "FEO" and at_name in {"FE1", "FE2"}:
        return _atomic_radii[21][typekey]
    elif resname == "HEM" and at_name in {"O1", "O2"}:
        return _atomic_radii[1][typekey]
    elif resname == "HEM" and at_name == "FE":
        return _atomic_radii[21][typekey]
    elif resname == "HEM" and at_name in {
        "CHA",
        "CHB",
        "CHC",
        "CHD",
        "CAB",
        "CAC",
        "CBB",
        "CBC",
    }:
        return _atomic_radii[11][typekey]
    elif resname == "HEM" and at_name in {
        "NA",
        "NB",
        "NC",
        "ND",
        "N A",
        "N B",
        "N C",
        "N D",
    }:
        return _atomic_radii[14][typekey]
    elif resname == "HEM" and at_name in {
        "C1A",
        "C1B",
        "C1C",
        "C1D",
        "C2A",
        "C2B",
        "C2C",
        "C2D",
        "C3A",
        "C3B",
        "C3C",
        "C3D",
        "C4A",
        "C4B",
        "C4C",
        "C4D",
        "CGA",
        "CGD",
    }:
        return _atomic_radii[10][typekey]
    elif resname == "HEM" and at_name in {"CMA", "CMB", "CMC", "CMD"}:
        return _atomic_radii[9][typekey]
    elif resname == "HEM" and at_name == "OH2":
        return _atomic_radii[2][typekey]
    elif resname == "AZI" and at_name in {"N1", "N2", "N3"}:
        return _atomic_radii[14][typekey]
    elif resname == "MPD" and at_name in {"C1", "C5", "C6"}:
        return _atomic_radii[9][typekey]
    elif resname == "MPD" and at_name == "C2":
        return _atomic_radii[10][typekey]
    elif resname == "MPD" and at_name == "C3":
        return _atomic_radii[8][typekey]
    elif resname == "MPD" and at_name == "C4":
        return _atomic_radii[7][typekey]
    elif resname == "MPD" and at_name in {"O7", "O8"}:
        return _atomic_radii[2][typekey]
    elif resname in {"SO4", "SUL"} and at_name == "S":
        return _atomic_radii[13][typekey]
    elif resname in {"SO4", "SUL", "PO4", "PHO"} and at_name in {
        "O1",
        "O2",
        "O3",
        "O4",
    }:
        return _atomic_radii[3][typekey]
    elif resname == "PC " and at_name in {"O1", "O2", "O3", "O4"}:
        return _atomic_radii[3][typekey]
    elif resname == "PC " and at_name == "P1":
        return _atomic_radii[13][typekey]
    elif resname == "PC " and at_name in {"C1", "C2"}:
        return _atomic_radii[8][typekey]
    elif resname == "PC " and at_name in {"C3", "C4", "C5"}:
        return _atomic_radii[9][typekey]
    elif resname == "PC " and at_name == "N1":
        return _atomic_radii[14][typekey]
    elif resname == "BIG" and at_name == "BAL":
        return _atomic_radii[17][typekey]
    elif resname in {"POI", "DOT"} and at_name in {"POI", "DOT"}:
        return _atomic_radii[23][typekey]
    elif resname == "FMN" and at_name in {"N1", "N5", "N10"}:
        return _atomic_radii[4][typekey]
    elif resname == "FMN" and at_name in {
        "C2",
        "C4",
        "C7",
        "C8",
        "C10",
        "C4A",
        "C5A",
        "C9A",
    }:
        return _atomic_radii[10][typekey]
    elif resname == "FMN" and at_name in {"O2", "O4"}:
        return _atomic_radii[1][typekey]
    elif resname == "FMN" and at_name == "N3":
        return _atomic_radii[14][typekey]
    elif resname == "FMN" and at_name in {"C6", "C9"}:
        return _atomic_radii[11][typekey]
    elif resname == "FMN" and at_name in {"C7M", "C8M"}:
        return _atomic_radii[9][typekey]
    elif resname == "FMN" and at_name.startswith(("C1", "C2", "C3", "C4", "C5")):
        return _atomic_radii[8][typekey]
    elif resname == "FMN" and at_name.startswith(("O2", "O3", "O4")):
        return _atomic_radii[2][typekey]
    elif resname == "FMN" and at_name.startswith("O5"):
        return _atomic_radii[3][typekey]
    elif resname == "FMN" and at_name in {"OP1", "OP2", "OP3"}:
        return _atomic_radii[3][typekey]
    elif resname in {"ALK", "MYR"} and at_name == "OT1":
        return _atomic_radii[3][typekey]
    elif resname in {"ALK", "MYR"} and at_name == "C01":
        return _atomic_radii[10][typekey]
    elif resname == "ALK" and at_name == "C16":
        return _atomic_radii[9][typekey]
    elif resname == "MYR" and at_name == "C14":
        return _atomic_radii[9][typekey]
    elif resname in {"ALK", "MYR"} and at_name.startswith("C"):
        return _atomic_radii[8][typekey]
    # Metals
    elif at_elem == "CU":
        return _atomic_radii[20][typekey]
    elif at_elem == "ZN":
        return _atomic_radii[19][typekey]
    elif at_elem == "MN":
        return _atomic_radii[27][typekey]
    elif at_elem == "FE":
        return _atomic_radii[25][typekey]
    elif at_elem == "MG":
        return _atomic_radii[26][typekey]
    elif at_elem == "CO":
        return _atomic_radii[28][typekey]
    elif at_elem == "SE":
        return _atomic_radii[29][typekey]
    elif at_elem == "YB":
        return _atomic_radii[31][typekey]
    # Others
    elif at_name == "SEG":
        return _atomic_radii[9][typekey]
    elif at_name == "OXT":
        return _atomic_radii[3][typekey]
    # Catch-alls
    elif at_name.startswith(("OT", "E")):
        return _atomic_radii[3][typekey]
    elif at_name.startswith("S"):
        return _atomic_radii[13][typekey]
    elif at_name.startswith("C"):
        return _atomic_radii[7][typekey]
    elif at_name.startswith("A"):
        return _atomic_radii[11][typekey]
    elif at_name.startswith("O"):
        return _atomic_radii[1][typekey]
    elif at_name.startswith(("N", "R")):
        return _atomic_radii[4][typekey]
    elif at_name.startswith("K"):
        return _atomic_radii[6][typekey]
    elif at_name in {"PA", "PB", "PC", "PD"}:
        return _atomic_radii[13][typekey]
    elif at_name.startswith("P"):
        return _atomic_radii[13][typekey]
    elif resname in {"FAD", "NAD", "AMX", "APU"} and at_name.startswith("O"):
        return _atomic_radii[1][typekey]
    elif resname in {"FAD", "NAD", "AMX", "APU"} and at_name.startswith("N"):
        return _atomic_radii[4][typekey]
    elif resname in {"FAD", "NAD", "AMX", "APU"} and at_name.startswith("C"):
        return _atomic_radii[7][typekey]
    elif resname in {"FAD", "NAD", "AMX", "APU"} and at_name.startswith("P"):
        return _atomic_radii[13][typekey]
    elif resname in {"FAD", "NAD", "AMX", "APU"} and at_name.startswith("H"):
        return _atomic_radii[15][typekey]
    else:
        warnings.warn(f"{at_name}:{resname} not in radii library.", BiopythonWarning)
        return 0.01


def _read_vertex_array(filename):
    """Read the vertex list into a Numeric array (PRIVATE)."""
    with open(filename) as fp:
        vertex_list = []
        for line in fp:
            sl = line.split()
            if len(sl) != 9:
                # skip header
                continue
            vl = [float(x) for x in sl[0:3]]
            vertex_list.append(vl)
    return numpy.array(vertex_list)


def get_surface(model, MSMS="msms"):
    """Represent molecular surface as a vertex list array.

    Return a Numpy array that represents the vertex list of the
    molecular surface.

    Arguments:
     - model - BioPython PDB model object (used to get atoms for input model)
     - MSMS - msms executable (used as argument to subprocess.call)

    """
    # Replace pdb_to_xyzr
    # Make x,y,z,radius file
    atom_list = Selection.unfold_entities(model, "A")

    xyz_tmp = tempfile.NamedTemporaryFile(delete=False).name
    with open(xyz_tmp, "w") as pdb_to_xyzr:
        for atom in atom_list:
            x, y, z = atom.coord
            radius = _get_atom_radius(atom, rtype="united")
            pdb_to_xyzr.write(f"{x:6.3f}\t{y:6.3f}\t{z:6.3f}\t{radius:1.2f}\n")

    # Make surface
    surface_tmp = tempfile.NamedTemporaryFile(delete=False).name
    msms_tmp = tempfile.NamedTemporaryFile(delete=False).name
    MSMS = MSMS + " -probe_radius 1.5 -if %s -of %s > " + msms_tmp
    make_surface = MSMS % (xyz_tmp, surface_tmp)
    subprocess.call(make_surface, shell=True)
    face_file = surface_tmp + ".face"
    surface_file = surface_tmp + ".vert"
    if not os.path.isfile(surface_file):
        raise RuntimeError(
            f"Failed to generate surface file using command:\n{make_surface}"
        )

    # Read surface vertices from vertex file
    surface = _read_vertex_array(surface_file)

    # Remove temporary files
    for fn in [xyz_tmp, surface_tmp, msms_tmp, face_file, surface_file]:
        try:
            os.remove(fn)
        except OSError:
            pass

    return surface


def min_dist(coord, surface):
    """Return minimum distance between coord and surface."""
    d = surface - coord
    d2 = numpy.sum(d * d, 1)
    return numpy.sqrt(min(d2))


def residue_depth(residue, surface):
    """Residue depth as average depth of all its atoms.

    Return average distance to surface for all atoms in a residue,
    ie. the residue depth.
    """
    atom_list = residue.get_unpacked_list()
    length = len(atom_list)
    d = 0
    for atom in atom_list:
        coord = atom.get_coord()
        d = d + min_dist(coord, surface)
    return d / length


def ca_depth(residue, surface):
    """Return CA depth."""
    if not residue.has_id("CA"):
        return None
    ca = residue["CA"]
    coord = ca.get_coord()
    return min_dist(coord, surface)


class ResidueDepth(AbstractPropertyMap):
    """Calculate residue and CA depth for all residues."""

    def __init__(self, model, msms_exec=None):
        """Initialize the class."""
        if msms_exec is None:
            msms_exec = "msms"

        depth_dict = {}
        depth_list = []
        depth_keys = []
        # get_residue
        residue_list = Selection.unfold_entities(model, "R")
        # make surface from PDB file using MSMS
        surface = get_surface(model, MSMS=msms_exec)
        # calculate rdepth for each residue
        for residue in residue_list:
            if not is_aa(residue):
                continue
            rd = residue_depth(residue, surface)
            ca_rd = ca_depth(residue, surface)
            # Get the key
            res_id = residue.get_id()
            chain_id = residue.get_parent().get_id()
            depth_dict[(chain_id, res_id)] = (rd, ca_rd)
            depth_list.append((residue, (rd, ca_rd)))
            depth_keys.append((chain_id, res_id))
            # Update xtra information
            residue.xtra["EXP_RD"] = rd
            residue.xtra["EXP_RD_CA"] = ca_rd
        AbstractPropertyMap.__init__(self, depth_dict, depth_keys, depth_list)