File size: 34,578 Bytes
b7731cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
# Copyright 2019-21 by Robert T. Miller.  All rights reserved.
# This file is part of the Biopython distribution and governed by your
# choice of the "Biopython License Agreement" or the "BSD 3-Clause License".
# Please see the LICENSE file that should have been included as part of this
# package.

"""SCADIO: write OpenSCAD program to create protein structure 3D model.

3D printing a protein structure is a non-trivial exercise due to the
overall complexity and the general requirement for supporting overhang regions
while printing.  This software is a path to generating a model for printing
(e.g. an STL file), and does not address the issues around converting the
model to a physical product.  OpenSCAD <http://www.openscad.org/> can create
a printable model from the script this software produces.  MeshMixer
<http://www.meshmixer.com/>, various slicer software, and the 3D printer
technology available to you provide options for addressing the problems around
physically rendering the model.

The model generated here consists of OpenSCAD primitives, e.g. spheres and
cylinders, representing individual atoms and bonds in an explicit model of a
protein structure.  The benefit is that individual atoms/bonds may be selected
for specific print customizations relevant to 3D printing (such as rotatable
bond mechanisms or hydrogen bond magnets).  Alternatively, use e.g. Chimera to
render a structure as ribbons or similar for printing as a single object.

I suggest generating your initial model using the OpenSCAD script provided
here, then modifying that script according to your needs.  Changing the
atomScale and bondRadius values can simplify the model by removing gaps and
the corresponding need for supports, or you may wish to modify the
hedronDispatch() routine to select residues or chain sections for printing
separately and subsequently joining with rotatable bonds.  During this
development phase you will likely have your version include only the data
matrices generated here, by using the `includeCode=False` option to
write_SCAD().  An example project using rotatable backbone and magnetic
hydrogen bonds is at <https://www.thingiverse.com/thing:3957471>.
"""
# import re

from Bio.File import as_handle
from Bio.PDB.PDBExceptions import PDBException

from Bio.PDB.internal_coords import IC_Residue, IC_Chain

# from Bio.PDB.Structure import Structure
# from Bio.PDB.Residue import Residue
from Bio.PDB.vectors import homog_scale_mtx

import numpy as np  # type: ignore


def _scale_residue(res, scale, scaleMtx):
    if res.internal_coord:
        res.internal_coord.applyMtx(scaleMtx)
        if res.internal_coord.gly_Cbeta:
            res.internal_coord.scale = scale


def write_SCAD(
    entity,
    file,
    scale=None,
    pdbid=None,
    backboneOnly=False,
    includeCode=True,
    maxPeptideBond=None,
    start=None,
    fin=None,
    handle="protein",
):
    """Write hedron assembly to file as OpenSCAD matrices.

    This routine calls both :meth:`.IC_Chain.internal_to_atom_coordinates` and
    :meth:`.IC_Chain.atom_to_internal_coordinates` due to requirements for
    scaling, explicit bonds around rings, and setting the coordinate space of
    the output model.

    Output data format is primarily:

    - matrix for each hedron:
        len1, angle2, len3, atom covalent bond class, flags to indicate
        atom/bond represented in previous hedron (OpenSCAD very slow with
        redundant overlapping elements), flags for bond features
    - transform matrices to assemble each hedron into residue dihedra sets
    - transform matrices for each residue to position in chain

    OpenSCAD software is included in this Python file to process these
    matrices into a model suitable for a 3D printing project.

    :param entity: Biopython PDB :class:`.Structure` entity
        structure data to export
    :param file: Bipoython :func:`.as_handle` filename or open file pointer
        file to write data to
    :param float scale:
        units (usually mm) per angstrom for STL output, written in output
    :param str pdbid:
        PDB idcode, written in output. Defaults to '0PDB' if not supplied
        and no 'idcode' set in entity
    :param bool backboneOnly: default False.
        Do not output side chain data past Cbeta if True
    :param bool includeCode: default True.
        Include OpenSCAD software (inline below) so output file can be loaded
        into OpenSCAD; if False, output data matrices only
    :param float maxPeptideBond: Optional default None.
        Override the cut-off in IC_Chain class (default 1.4) for detecting
        chain breaks.  If your target has chain breaks, pass a large number
        here to create a very long 'bond' spanning the break.
    :param int start,fin: default None
        Parameters for internal_to_atom_coords() to limit chain segment.
    :param str handle: default 'protein'
        name for top level of generated OpenSCAD matrix structure

    See :meth:`.IC_Residue.set_flexible` to set flags for specific residues to
    have rotatable bonds, and :meth:`.IC_Residue.set_hbond` to include cavities
    for small magnets to work as hydrogen bonds.
    See <https://www.thingiverse.com/thing:3957471> for implementation example.

    The OpenSCAD code explicitly creates spheres and cylinders to
    represent atoms and bonds in a 3D model.  Options are available
    to support rotatable bonds and magnetic hydrogen bonds.

    Matrices are written to link, enumerate and describe residues,
    dihedra, hedra, and chains, mirroring contents of the relevant IC_*
    data structures.

    The OpenSCAD matrix of hedra has additional information as follows:

    * the atom and bond state (single, double, resonance) are logged
        so that covalent radii may be used for atom spheres in the 3D models

    * bonds and atoms are tracked so that each is only created once

    * bond options for rotation and magnet holders for hydrogen bonds
        may be specified (see :meth:`.IC_Residue.set_flexible` and
        :meth:`.IC_Residue.set_hbond` )

    Note the application of :data:`Bio.PDB.internal_coords.IC_Chain.MaxPeptideBond`
    :  missing residues may be linked (joining chain segments with arbitrarily
    long bonds) by setting this to a large value.

    Note this uses the serial assembly per residue, placing each residue at
    the origin and supplying the coordinate space transform to OpenaSCAD

    All ALTLOC (disordered) residues and atoms are written to the output
    model.  (see :data:`Bio.PDB.internal_coords.IC_Residue.no_altloc`)
    """
    if maxPeptideBond is not None:
        mpbStash = IC_Chain.MaxPeptideBond
        IC_Chain.MaxPeptideBond = float(maxPeptideBond)

    # step one need IC_Residue atom_coords loaded in order to scale
    # so if no internal_coords, initialise from Atom coordinates
    added_IC_Atoms = False
    if "S" == entity.level or "M" == entity.level:
        for chn in entity.get_chains():
            if not chn.internal_coord:
                chn.internal_coord = IC_Chain(chn)
                added_IC_Atoms = True
    elif "C" == entity.level:
        if not entity.internal_coord:  # entity.internal_coord:
            entity.internal_coord = IC_Chain(entity)
            added_IC_Atoms = True
    else:
        raise PDBException("level not S, M or C: " + str(entity.level))

    if added_IC_Atoms:
        # if loaded pdb, need to scale, and asm, gen atomArray
        entity.atom_to_internal_coordinates()
    else:
        # if loaded pic file and need to scale, generate atom coords
        entity.internal_to_atom_coordinates(None)

    if scale is not None:
        scaleMtx = homog_scale_mtx(scale)

        if "C" == entity.level:
            entity.internal_coord.atomArray = np.dot(
                entity.internal_coord.atomArray[:], scaleMtx
            )
            entity.internal_coord.hAtoms_needs_update[:] = True
            entity.internal_coord.scale = scale
        else:
            for chn in entity.get_chains():
                if hasattr(chn.internal_coord, "atomArray"):
                    chn.internal_coord.atomArray = np.dot(
                        chn.internal_coord.atomArray[:], scaleMtx
                    )
                    chn.internal_coord.hAtoms_needs_update[:] = True
                    chn.internal_coord.scale = scale

    # generate internal coords for scaled entity
    # (hedron bond lengths have changed if scaled)
    # if not scaling, still need to generate internal coordinate
    # bonds for ring sidechains
    # AllBonds is a class attribute for IC_Residue.atom_to_internal_coordinates
    # to generate explicit hedra covering all bonds

    allBondsStash = IC_Residue._AllBonds
    IC_Residue._AllBonds = True
    # trigger rebuild of hedra for AllBonds
    if "C" == entity.level:
        entity.internal_coord.ordered_aa_ic_list[0].hedra = {}
        delattr(entity.internal_coord, "hAtoms_needs_update")
        delattr(entity.internal_coord, "hedraLen")
    else:
        for chn in entity.get_chains():
            chn.internal_coord.ordered_aa_ic_list[0].hedra = {}
            delattr(chn.internal_coord, "hAtoms_needs_update")
            delattr(chn.internal_coord, "hedraLen")
    entity.atom_to_internal_coordinates()
    IC_Residue._AllBonds = allBondsStash

    # rebuild atom coordinates now with chain starting at origin: in OpenSCAD
    # code, each residue model is transformed to N-Ca-C start position instead
    # of updating transform matrix along chain
    entity.internal_to_atom_coordinates()

    with as_handle(file, "w") as fp:
        if includeCode:
            fp.write(peptide_scad)

        if not pdbid and hasattr(entity, "header"):
            pdbid = entity.header.get("idcode", None)
        if pdbid is None or "" == pdbid:
            pdbid = "0PDB"
        fp.write(
            'protein = [ "' + pdbid + '", ' + str(scale) + ",  // ID, protein_scale\n"
        )

        if "S" == entity.level or "M" == entity.level:
            for chn in entity.get_chains():
                fp.write(" [\n")
                chn.internal_coord._write_SCAD(
                    fp, backboneOnly=backboneOnly, start=start, fin=fin
                )
                fp.write(" ]\n")
        elif "C" == entity.level:
            fp.write(" [\n")
            entity.internal_coord._write_SCAD(
                fp, backboneOnly=backboneOnly, start=start, fin=fin
            )
            fp.write(" ]\n")
        elif "R" == entity.level:
            raise NotImplementedError("writescad single residue not yet implemented.")

        fp.write("\n];\n")

    if maxPeptideBond is not None:
        IC_Chain.MaxPeptideBond = mpbStash


peptide_scad = """
/*
//
// peptide.scad
// Copyright (c) 2019 Robert T. Miller.  All rights reserved.
// This file is part of the Biopython distribution and governed by your
// choice of the "Biopython License Agreement" or the "BSD 3-Clause License".
// Please see the LICENSE file that should have been included as part of this
// package.
//
// This is the support file to build an OpenSCAD (http://www.openscad.org/) model
// of a protein from internal coordinates.  The resulting model may be constructed
// on a 3D printer.
//
// data matrices should be appended below to form a program ready to load into
// the OpenSCAD application.
//
//  The protein_scale value used throughout is the second element of the
//    protein[] array appended below.
//    This is the value supplied when generating the data for build units per
//    PDB angstrom.
//    You may wish to modify it here to adjust the appearance of the model in
//    terms of atom sphere or bond cylinder diameter, however the bond lengths
//    are fixed with the supplied value when the data matrices are generated.
//    Atom sphere and bond cylinder radii may be individually adjusted below as
//    well.
//
//  $fn (fragment number) is an OpenSCAD parameter controlling the smoothness
//    of the model surface.  Smaller values will render faster, but yield more
//    'blocky' models.
//
//  This is intended to be a working example, you are encouraged to modify the
//    OpenSCAD subroutines below to generate a model to your liking.  For more
//    information, start with http://www.openscad.org/cheatsheet/index.html
//
//  Note especially the hedronDispatch() subroutine below: here you may select
//    hedra based on residue, sequence position, and class (hedron atoms) for
//    special handling.  Also see the per hedron render options in the hedra[]
//    array.
//
//  If you modify this file, you may find it useful to generate the data
//    matrices without this OpenSCAD code by calling write_SCAD() with the
//    includeCode=False option, then use the OpenSCAD 'include <>' facility at
//    the end of your modified OpenSCAD program.
*/

rotate([-90,0,0])  // convenient for default location (no N-Ca-C start coordinates)
    chain(protein);   // this is the main subroutine call to  build the structure

// top-level OpenSCAD $fn for visible surfaces.  Rotatable bonds use $fn=8
// inside, regardless of this setting.
$fn = 0;  // 0 yields OpenSCAD default of 30.  $n=8 should print with minimal support

tubes=false;     // style: render atoms and bonds as constant diameter cylinders, preferred for rotatable bonds / h-bonds
support=false;   // enable print-in-place internal support for rotatable bonds
// N.B. rotatable bonds must be parallel to build plate for internal support
// structures to be generated correctly by slicer

// output parameters
atomScale=1.0;  // 0.8 better for rotatable bonds
defaultAtomRadius = 0.77;  // used if tubes = true

bondRadius = (tubes ? defaultAtomRadius * atomScale : 0.4);
jBondRadius = defaultAtomRadius * atomScale;  // radius for rotatable bonds

// general printer, slicer, print settings
layerHeight=0.15;  // must match slicer setting for print-in-place support
clearance=0.3;     // sliding clearance - can be smaller (0.2) if not doing print-in-place
pClearance=0.2;    // press-fit clearance (magnets for h-bonds)
shim=0.05;         // extra to make OpenSCAD surfaces distinct in difference()
nozzleDiameter=0.4;

// need one magnet for each side of hydrogen bond, suggest 3mm x 5mm e.g. from eBay
// use compass to identify poles if you care, North pointing (red) repels compass North pointing
magR=3/2;    // magnet radius
magL=5;      // magnet length

// for $fn=8 which works nice on fdm printer
oRot = 22.5;              // 45/2, rotate to make fn=8 spheres and cylinders flat on build plate
apmFac = cos(180/8);      // apothem factor - multiply by radius for center to octagon side distance
octSide = 2* tan(180/8);  // multiply by radius to get length of octagon side
// for values of $fn:
fnRot = ($fn ? 90-(180/$fn) : 90-(180/30));

bondLenFac = 0.6;         // fraction of bond length to extend from atom for each arm of hedron in join

hblen = 1.97;             // hydrogen bond length

wall = 3*nozzleDiameter;
joinerStep = 1;           // radius difference between rotatable bond axle and end knob inside bond cylinder

caTop = false;     // only make top of N_C-alpha_C hedron plus C-beta (see hedron() and hedron_dispatch() examples)

/*
//
// Generate a sphere to represent an atom.
// Colour and size determined for the atom covalent radius specified by the
//   parameter 'a' by lookup in the atomData table below, then scaled by the
//   supplied parameter 'scal'.
//
// scal : protein_scale
// clr : additional radius if used to create clearance for rotatable bonds
//
*/
module atom(a,scal,clr=0)
{
    ad = atomData[search([a],atomData)[0]];
    color(ad[1]) {
        rotate([0,0,fnRot]) sphere(r=((ad[2]*atomScale)*scal)+clr);
    }
}

/*
//
// a hedron (below) may be 'reversed' in terms of the order of its two bonds;
// this function fixes the ordering
//
*/
function hFlip(h,rev) =
        //   yes reversed                                     :  not reversed
        //    0    1     2     3     4     5     6      7     :     0     1     2     3    4     5      6      7
        //  len1  len3  atom1 atom3  a1    a2   a1-a2  a2-a3      len1  len3  atom1 atom3   a1    a3  a1-a2  a2-a3
    (rev ? [ h[2], h[0], h[5], h[3], h[8], h[6], h[10], h[9] ] : [ h[0], h[2], h[3], h[5], h[6], h[8],  h[9], h[10] ]);
    // h[1] = angle2 for both cases


/*
//
// generate the male or female interior cylinders of a rotating bond
//
*/
module joinUnit(cOuterLen, cOuterRad, cInnerLen, cInnerRad, male=false) {
    if (male) {
        rotate([0,0,oRot]) {
            cylinder(h=cInnerLen, r=cInnerRad, center=false, $fn=8);
            cylinder(h=cOuterLen, r=cOuterRad, center=false, $fn=8);
        }
    } else {
        rotate([0,0,fnRot]) {
            cylinder(h=cInnerLen, r=cInnerRad, center=false, $fn=30);
            cylinder(h=cOuterLen, r=cOuterRad, center=false, $fn=30);
        }
    }
}

/*
//
// create a rotatable bond
//
// supportSel : 0 for no support, 1 or 2 for support on top or bottom (needed
// for reversed hedra)
//
*/
module joiner(bondlen, scal, male=0, ver=0, supportSelect=0) {  // ver = differentiate joiner part lengths to guide assembly, but not used
    lenfac = bondLenFac;
    jClr = clearance+0.05;

    cOuterRad = (jBondRadius * scal) - (2*wall + (male ? jClr/2 : -jClr/2));
    cInnerRad = cOuterRad - joinerStep;  // m/f jClr already in cOuterRad;  - (male ? 0 : -0*jClr/2);

    hArmLen = (bondlen * lenfac);
    lenClr = 0.6*jClr;  // length clearance applied to male and female both, so effective clearance is 2x this value
    cOuterLen = hArmLen * lenfac + (ver ? 0.5 : - 0.5) - (wall+ (male ? lenClr*2 : -lenClr*2  ));

    joinerOffset = (hArmLen * (1 - lenfac)) + (male ? lenClr : -lenClr) - (ver ? 1 : 0);

    i=supportSelect-1;
    oside = cOuterRad*octSide;
    wid = oside+2*wall+4*jClr+1;

    if (male) {
        rotate([0,180,0])
        translate([0,0,-(bondlen-joinerOffset)]) {
            difference() {
                joinUnit(cOuterLen, cOuterRad, bondlen, cInnerRad, male=true);
                if (supportSelect) {
                    rotate([0,0,i*180]) {
                        translate([0,(cOuterRad*apmFac)-0.5*layerHeight,cOuterLen/2]) {
                                cube([oside+2*shim,layerHeight+shim,cOuterLen+2*shim],center=true);
                        }
                    }
                }
            }
            if (supportSelect) {
                rotate([0,0,i*180]) {
                    translate([0,(cOuterRad*apmFac)-0.5*layerHeight,cOuterLen/2]) {
                        for (j=[0:1]) {
                            rotate([0,(j?60:-60),0])
                                cube([wid,layerHeight,2*nozzleDiameter],center=true);
                        }
                    }
                }
            }
        }
    } else {
        translate([0,0,joinerOffset]) {
            joinUnit(cOuterLen, cOuterRad, bondlen, cInnerRad);
            if (supportSelect) {  // extra gap top and bottom because filament sags
                supHeight = max(5*layerHeight,2*(cOuterRad-cOuterRad*apmFac));  // double because center=true below
                for(j=[0:1]) {
                    rotate([0,0,j*180]) {
                        translate([0,(cOuterRad*apmFac),cOuterLen/2]) {
                            cube([oside+2*shim,supHeight+shim,cOuterLen+2*shim],center=true);
                        }
                    }
                }
            }
        }
    }
}


/*
//
// create bond with different options (regular, skinny, h-bond atom, rotatable
// male or female
//
//  parameters:
//  bl : bond length
//  br : bond radius
//  scal : protein_scale
//  key : option symbols defined below
//  atm : atomic element symbol, used for color and radius by atom() routine above
//  ver : make rotatable bonds slightly different based on value; currently unused
//  supporSel : enable print-in-place support for rotatable bonds
//
*/

// option symbols - these names generated in BioPython code so avoid changing without thought
StdBond = 1;
FemaleJoinBond = 2;
MaleJoinBond = 3;
SkinnyBond = 4;        // Calpha - Cbeta bond cylinder needs to be skinny for clearance with rotating bonds
HBond = 5;             // make room inside atom/bond to insert magnet to appropriate depth

module bond(bl, br, scal, key, atm, ver, supportSel=0) {

    br = (key == FemaleJoinBond ? jBondRadius * scal : br)  * (key == SkinnyBond ? 0.65 : 1);   // bond radius smaller for skinnyBond
    bl = (key == FemaleJoinBond ? bl * bondLenFac : bl);  // make female joiner shorter
    if (key == MaleJoinBond) { // male join is direct solid, others need difference()
        joiner(bl, scal, male = true, ver = ver, supportSelect=supportSel);
    } else {  // regular bond / skinny / h-bond / female join
        bhblen = bl +(hblen/2 * scal);
        rotate([0,0,fnRot]) {
            difference() {
                union() {
                    cylinder(h=bl,r=br,center=false);
                    if (key == HBond) {  // make extension collar for h-bond magnet
                        rotate([0,0,oRot-fnRot]) cylinder(h=bhblen-1,r=(magR + clearance +wall),center=false, $fn=8);
                    }
                }
                atom(atm,scal,-clearance);  // remove overlap with atom to clear area for female join
                if (key == HBond) {     // make space to insert magnet inside bond cylinder
                    translate([0,0,(bhblen-magL)-pClearance])
                        cylinder(h=magL+pClearance+shim, r=magR+pClearance, center=false, $fn=8);
                }
            }
        }
    }
}

/*
//
// Generate a 'hedron', one plane of 3 points, consisting of 3 atoms joined by
//   two bonds.
//   Defined as bond length - bond angle - bond length
//
// In some cases the sequence of atoms in the h[] array is reversed (rev flag),
// as detailed in the comments.
//
// other parameters:
//
// h = hedron array data according to rev flag:
//   yes reversed                                     :  not reversed
//    0    1     2     3     4     5     6      7     :     0     1     2     3    4     5      6      7
//  len1  len3  atom1 atom3  a1    a2   a1-a2  a2-a3      len1  len3  atom1 atom3   a1    a3  a1-a2  a2-a3
//
// split: chop half of the hedron - to selectively print parts of a rotating
//   bond to be glued together.  top or bottom half selected by global caTop
//   (C-alpha top) variable, undef by default so bottom half.
//
// supporSel: enable support structure inside rotatable bond to print in place.
//  Please note the bond needs to be exactly parallel to the buildplate and the
//  layerHeight global variable above needs to be set correctly for the
//  structure to be correctly created by your slicer software.
//
 */

module hedron(h,rev=0,scal,split=0, supportSel) {

    newh = hFlip(h, rev);  // make a consistent hedron array regardless of rev flag

    bondRad = bondRadius * scal;
    difference() {
        union(){
            if (h[7]) {
                // central atom at 0,0,0
                atom(h[4],scal);
            }

            if (newh[5] && newh[7] != FemaleJoinBond) {  // not female join
                // comments for non-reversed case
                // atom 3 is len3 up on +z
                translate([0,0,newh[1]])
                    difference() {
                        atom(newh[3],scal * (newh[7] == SkinnyBond ? 0.7 : 1));  // if skinny bond make atom (C-beta) same diameter as bond
                        if (newh[7] == HBond) {  // make room for hbond magnet through atom - this branch not used for backbone N,O
                            translate([0,0,scal*hblen/2-magL-pClearance])
                                cylinder(h=magL+pClearance,r=magR+pClearance,$fn=8);
                        }
                    }
            }

            if (newh[7]) {
                // atom 2 - atom 3 bond from origin up +z distance len3
                bond(newh[1], bondRad, scal, newh[7], h[4], ver=1, supportSel=supportSel);
            }
            rotate([0, h[1], 0]) {                        // rotate following elements by angle2 about Y
                if (newh[6]) {
                    bond(newh[0], bondRad, scal, newh[6], h[4], ver=1, supportSel=supportSel);  // h[4] is center atom (atom 2)
                }
                if (newh[4] && newh[6] != FemaleJoinBond) {   // if draw atom 2 and atom1-atom2 not joiner
                    translate([0,0,newh[0]]) {
                        difference() {
                            atom(newh[2],scal * (newh[6] == SkinnyBond ? 0.7 : 1));  // put atom1 sphere len1 away on Z
                            if (newh[6] == HBond) {  // make room for hbond magnet through atom
                                translate([0,0,scal*hblen/2-magL-pClearance])
                                    cylinder(h=magL+pClearance,r=magR+pClearance,$fn=8);
                            }
                        }
                    }
                }
            }
        }

        if (split) {
            // top / bottom half cutter
            thick = 2*bondRadius * scal;
            Zdim = newh[0];
            Xdim = newh[1];

            cside = 7* defaultAtomRadius * atomScale * scal / 12 + (caTop ? pClearance : -pClearance);
            difference() {
                translate([-Xdim,((rev || caTop) ? 0 : -thick),-Zdim]) {
                    cube([2*Xdim,thick,2*Zdim]);
                }
                if (!caTop) {
                    rotate([0,(rev ? h[1] : 0),0])
                    rotate([45,0,0])
                    cube([cside, cside, cside],center=true);
                }
            }
            if (caTop) {
                //translate([tx+cside,0,tx+cside])
                    rotate([0,(rev ? h[1] : 0),0])
                        rotate([45,0,0])
                        cube([cside, cside, cside], center=true);
            }
        }

        if (newh[7] == FemaleJoinBond) {  // female join
            joiner(newh[1], scal, male=false, ver=1, supportSelect=supportSel);
        }

        if (newh[6] == FemaleJoinBond) {  // female join
            rotate([0, h[1], 0]) {                        // rotate following elements by angle2 about Y
            joiner(newh[0], scal, male=false, ver=1, supportSelect=supportSel);
            translate([0,0,newh[0]])
                atom(newh[2],scal+0.5,clearance);  // clearance for atom against join outer cylinder
            }
        }

        if (newh[7] == FemaleJoinBond || newh[6] == FemaleJoinBond) {  // female join both hedron arms
            translate([0,0,newh[1]]) atom(newh[3],scal+0.5,clearance);  // clearance for atom against join outer cylinder
        }
    }
}

/*
//
// Hook to call custom routines for specific hedra.
//
// Residue is h[h_residue]
// Sequence position is h[h_seqpos]
//
*/
module hedronDispatch(h,rev=0,scal) {
    // default action is just to pass to hedron()

    hedron(h, rev, scal, 0, (support ? 1 : 0));

    /*
    // Some examples for special handling for specific hedra below:
    // note use of h_seqpos, h_residue, h_class for selecting hedra

    // bool flag caTop (for rotatable bond part) needs to be a global variable
    // so hedron() above can see it.

caBase1 = false;   // only make bottom of N_C-alpha_C hedron
caBase2 = false;   // same as caBase1 but for case of reversed hedron (for testing, should be identical to caBase1 result)
amideOnly = false; // make only the first amide

    if (caTop) {
        // these examples select a specific sequence position (h[h_seqpos] == n)
        if (h[h_seqpos] == 1) {
            if (h[h_class] == "NCAC") {
                hedron(h, rev, scal, 1);
            } else if (h[h_class] == "CBCAC") {
                color("yellow") {  // ca-cb
                    hedron(h, rev, scal);
                }
            }
        }
    } else if (caBase1) {
        if (h[h_seqpos] == 1 && (h[h_class] == "NCAC")) {
            hedron(h, rev, scal, true, (support ? 1 : 0));
        }
    } else if (caBase2) {
        if (h[h_seqpos] == 5 && (h[h_class] == "NCAC")) {
            hedron(h, rev, scal, true, (support ? 1 : 0));
        }
    } else if (amideOnly) {
        if (h[h_seqpos] == 1) {
            if (h[h_class] == "CACN") {
                color("darkgray") {
                    hedron(h, rev, scal);
                }
            }  else if (h[h_class] == "CACO") {
                color("red") {   // c=o
                    hedron(h, rev, scal);
                }
            }  else if (h[h_class] == "CNCA") {
                color("cyan") {  // h=n
                    hedron(h, rev, scal);
                }
            }
        } else if ((h[h_seqpos] == 2) && (h[h_class] == "HNCA")) {
            color("cyan") {  // h=n
                hedron(h, rev, scal);
            }
        }
       // actions above select out only a single hedron
    } else {
        // actions below will process hedra all but handle selected ones differently

        if (h[h_class] == "NCAC") {
            if (h[h_seqpos] == 1) {
                if (! CCap && NCap) {  // make split rotatable bond for terminal NH3
                    hedron(h, rev, scal, true, (support ? 1 : 0));
                }
            } else if (h[h_seqpos] == 5) {  // make split rotatable bond for terminal COOH
                hedron(h, rev, scal, true, (support ? 2 : 0));  // note supportSel = 2
            } else {
                hedron(h, rev, scal, 0, (support ? 2 : 0));
            }
        } else if (h[h_class] == "CBCAC") {
            color("yellow") {                     // ca-cb -- color yellow in OpenSCAD renderer
                if (h[h_seqpos] == 1 ) {         // don't make here for N-term
                } else if (h[h_seqpos] == 5 ) {  // don't make here for C-term
                } else {
                    hedron(h, rev, scal);       // otherwise do make here
                }
            }
        } else if (h[h_class] == "HNCA") {
            color("cyan") { // color h-n in OenSCAD renderer
                if (h[h_seqpos] == 1) {
                    if (NCap) {                      // only make at N term if variable NCap is true
                        hedron(h, rev, scal, 0, (support ? 1 : 0));
                    }
                } else {
                    hedron(h, rev, scal, 0, (support ? 1 : 0));
                }
            }
        } else if (h[h_residue] == "P") {
            color("darkgray")   // highlight Prolines in OpenSCAD renderer
                hedron(h, rev, scal);
        } else {
            echo("unrecognised hedron", h[h_class]);
            color("pink")
                hedron(h, rev, scal, 0, (support ? 1 : 0));
        }
    }
    */
}

/*
//
// Generate a hedron rotated to specific angle d
//
*/
module d2(d,hedra,scal)
{
    tz = (d[d_reversed] ? hedra[d[d_h2ndx]][2] : hedra[d[d_h2ndx]][0]);      // get h2 len1 depending on reversed
    rotate(d[d_dangle1]) {                                                   // 4. rotate h2 to specified dihedral angle
        translate([0,0,tz]) {                                               // 3. translate h2 h2:len1 up +z
            rotate([180, 0, 0]) {                                          // 2. rotate h2r about X so h2:a3 in +z and h2:a1 in -z
                hedronDispatch(hedra[d[d_h2ndx]],(!d[d_reversed]),scal);  // 1. reverse hedron 2 orientation = h2r
            }
        }
    }
}

/*
//
// Generate two hedra at specified dihedral angle d
//
*/
module dihedron(d,hedra,scal)
{
    if (d[d_h1new])
        hedronDispatch(hedra[d[d_h1ndx]],d[d_reversed],scal);                // reverse h1 if dihedral reversed
    if (d[d_h2new])
        d2(d,hedra,scal);
}

/*
//
// Generate a residue consisting of the set of dihedra in the parameter 'r',
//   referring to hedra the table specified in the parameter 'hedra'.
//
*/
module residue(r,hedra, scal)
{
    for (d = r) {
        multmatrix(d[d_dihedralTransform]) {
            dihedron(d, hedra, scal);
        }
    }
}

/*
//
// Generate a chain of residues, each positioned by a supplied
// rotation/translation matrix.
//
*/
module chain(protein)
{
    chnD = protein[p_chainData];
    c = chnD[c_residues];
    dihedra = chnD[c_dihedra];
    hedra = chnD[c_hedra];
    for (r = c) {
        multmatrix(r[r_resTransform]) {
            residue(dihedra[r[r_resNdx]],hedra, protein[p_proteinScale]);
        }
    }
}

/*
//
// OpenSCAD array indices to reference protein data - tied to BioPython code
//
*/

// protein base level
p_pdbid = 0;
p_proteinScale = 1;
p_chainData = 2;

// chain level data
c_chainID = 0;
c_dihedra = 1;
c_hedra = 2;
c_residues = 3;

// hedra definitions
h_len1 = 0;
h_angle2 = 1;
h_len3 = 2;
h_atom1class = 3;
h_atom2class = 4;
h_atom3class = 5;
h_atom1state = 6;
h_atom2state = 7;
h_atom3state = 8;
h_bond1state = 9;
h_bond2state = 10;
h_residue = 11;
h_seqpos = 12;  // residue sequence position for first atom in hedra
h_class = 13;

// dihedra specifications for each residue in sequence, dihedral array
d_dangle1 = 0;
d_h1ndx = 1;
d_h2ndx = 2;
d_reversed = 3;
d_h1new = 4;
d_h2new = 5;
d_dihedralTransform = 6;

// residueSet: world transform for each residue in sequence array
r_resNdx = 0;
r_resID = 1;
r_resTransform = 2;


// use single default atom radius for all atoms if tubes = true, else use
// covalent radii from literature
atomData = ( tubes ?
            [   ["Csb","green" , defaultAtomRadius], ["Cres","green" , defaultAtomRadius], ["Cdb","green" , defaultAtomRadius],
                ["Osb","red" , defaultAtomRadius], ["Ores","red" , defaultAtomRadius], ["Odb","red" , defaultAtomRadius],
                ["Nsb","blue" , defaultAtomRadius], ["Nres","blue" , defaultAtomRadius], ["Ndb","blue" , defaultAtomRadius],
                ["Hsb","gray" , defaultAtomRadius],
                ["Ssb","yellow" , defaultAtomRadius] ]
            :

// covalent radii from Heyrovska, Raji : 'Atomic Structures of all the Twenty
// Essential Amino Acids and a Tripeptide, with Bond Lengths as Sums of Atomic
// Covalent Radii'  https://arxiv.org/pdf/0804.2488.pdf

            [   ["Csb","green" , 0.77], ["Cres","green" , 0.72], ["Cdb","green" , 0.67],
                ["Osb","red" , 0.67], ["Ores","red" , 0.635], ["Odb","red" , 0.60],
                ["Nsb","blue" , 0.70], ["Nres","blue" , 0.66], ["Ndb","blue" , 0.62],
                ["Hsb","gray" , 0.37],
                ["Ssb","yellow" , 1.04] ]
    );


// optionally include protein array data here [ write_SCAD(includeCode=False) ], e.g.:
// include <1rtm.scad>;
// or paste below

"""  # noqa