Spaces:
No application file
No application file
File size: 10,193 Bytes
b7731cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
# Copyright 2019 Joe Greener. All rights reserved.
#
# This file is part of the Biopython distribution and governed by your
# choice of the "Biopython License Agreement" or the "BSD 3-Clause License".
# Please see the LICENSE file that should have been included as part of this
# package.
"""Write a MMTF file."""
import itertools
from collections import defaultdict
from string import ascii_uppercase
from Bio.PDB.StructureBuilder import StructureBuilder
from Bio.PDB.PDBIO import Select, StructureIO
from mmtf.api.mmtf_writer import MMTFEncoder
from Bio.SeqUtils import seq1
from Bio.Data.PDBData import protein_letters_3to1_extended
_select = Select()
class MMTFIO(StructureIO):
"""Write a Structure object as a MMTF file.
Examples
--------
>>> from Bio.PDB import MMCIFParser
>>> from Bio.PDB.mmtf import MMTFIO
>>> parser = MMCIFParser()
>>> structure = parser.get_structure("1a8o", "PDB/1A8O.cif")
>>> io=MMTFIO()
>>> io.set_structure(structure)
>>> io.save("bio-pdb-mmtf-out.mmtf")
>>> import os
>>> os.remove("bio-pdb-mmtf-out.mmtf") # tidy up
"""
def __init__(self):
"""Initialise."""
pass
def save(self, filepath, select=_select):
"""Save the structure to a file.
:param filepath: output file
:type filepath: string
:param select: selects which entities will be written.
:type select: object
Typically select is a subclass of L{Select}, it should
have the following methods:
- accept_model(model)
- accept_chain(chain)
- accept_residue(residue)
- accept_atom(atom)
These methods should return 1 if the entity is to be
written out, 0 otherwise.
"""
# Similar to the PDBIO save method, we check if the filepath is a
# string for a filepath or an open file handle
if not isinstance(filepath, str):
raise ValueError(
"Writing to a file handle is not supported for MMTF, filepath must be a string"
)
if hasattr(self, "structure"):
self._save_structure(filepath, select)
else:
raise ValueError("Use set_structure to set a structure to write out")
def _chain_id_iterator(self):
"""Label chains sequentially: A, B, ..., Z, AA, AB etc."""
for size in itertools.count(1):
for s in itertools.product(ascii_uppercase, repeat=size):
yield "".join(s)
def _save_structure(self, filepath, select):
count_models, count_chains, count_groups, count_atoms = 0, 0, 0, 0
# If atom serials are missing, renumber atoms starting from 1
atom_serials = [a.serial_number for a in self.structure.get_atoms()]
renumber_atoms = None in atom_serials
encoder = MMTFEncoder()
# The counts are set to 0 here and changed later once we have the values
encoder.init_structure(
total_num_bonds=0,
total_num_atoms=0,
total_num_groups=0,
total_num_chains=0,
total_num_models=0,
structure_id=self.structure.id,
)
encoder.set_xtal_info(space_group="", unit_cell=None)
# The header information is missing for some structure objects
header_dict = defaultdict(str, self.structure.header)
if header_dict["resolution"] == "":
header_dict["resolution"] = None
if header_dict["structure_method"] == "":
header_dict["structure_method"] = []
else:
header_dict["structure_method"] = [header_dict["structure_method"]]
encoder.set_header_info(
r_free=None,
r_work=None,
resolution=header_dict["resolution"],
title=header_dict["name"],
deposition_date=header_dict["deposition_date"],
release_date=header_dict["release_date"],
experimental_methods=header_dict["structure_method"],
)
# Tracks values to replace them at the end
chains_per_model = []
groups_per_chain = []
for mi, model in enumerate(self.structure.get_models()):
if not select.accept_model(model):
continue
chain_id_iterator = self._chain_id_iterator()
count_models += 1
encoder.set_model_info(
model_id=mi, # According to mmtf-python this is meaningless
chain_count=0, # Set to 0 here and changed later
)
for chain in model.get_chains():
if not select.accept_chain(chain):
continue
seqs = []
seq = ""
prev_residue_type = ""
prev_resname = ""
first_chain = True
for residue in chain.get_unpacked_list():
if not select.accept_residue(residue):
continue
count_groups += 1
hetfield, resseq, icode = residue.get_id()
if hetfield == " ":
residue_type = "ATOM"
entity_type = "polymer"
elif hetfield == "W":
residue_type = "HETATM"
entity_type = "water"
else:
residue_type = "HETATM"
entity_type = "non-polymer"
resname = residue.get_resname()
# Check if the molecule changes within the chain
# This will always increment for the first residue in a
# chain due to the starting values above
# Checking for similar entities is non-trivial from the
# structure object so we treat each molecule as a separate
# entity
if residue_type != prev_residue_type or (
residue_type == "HETATM" and resname != prev_resname
):
encoder.set_entity_info(
chain_indices=[count_chains],
sequence="", # Set to empty here and changed later
description="",
entity_type=entity_type,
)
encoder.set_chain_info(
chain_id=next(chain_id_iterator),
chain_name="\x00"
if len(chain.get_id().strip()) == 0
else chain.get_id(),
num_groups=0, # Set to 0 here and changed later
)
if count_chains > 0:
groups_per_chain.append(
count_groups - sum(groups_per_chain) - 1
)
if not first_chain:
seqs.append(seq)
first_chain = False
count_chains += 1
seq = ""
if entity_type == "polymer":
seq += seq1(resname, custom_map=protein_letters_3to1_extended)
prev_residue_type = residue_type
prev_resname = resname
encoder.set_group_info(
group_name=resname,
group_number=residue.id[1],
insertion_code="\x00"
if residue.id[2] == " "
else residue.id[2],
group_type="", # Value in the chemcomp dictionary, which is unknown here
atom_count=sum(
1
for a in residue.get_unpacked_list()
if select.accept_atom(a)
),
bond_count=0,
single_letter_code=seq1(
resname, custom_map=protein_letters_3to1_extended
),
sequence_index=len(seq) - 1 if entity_type == "polymer" else -1,
secondary_structure_type=-1,
)
for atom in residue.get_unpacked_list():
if select.accept_atom(atom):
count_atoms += 1
encoder.set_atom_info(
atom_name=atom.name,
serial_number=count_atoms
if renumber_atoms
else atom.serial_number,
alternative_location_id="\x00"
if atom.altloc == " "
else atom.altloc,
x=atom.coord[0],
y=atom.coord[1],
z=atom.coord[2],
occupancy=atom.occupancy,
temperature_factor=atom.bfactor,
element=atom.element,
charge=0,
)
seqs.append(seq)
# Now that we have the sequences, edit the entities to add them
start_ind = len(encoder.entity_list) - len(seqs)
for i, seq in enumerate(seqs):
encoder.entity_list[start_ind + i]["sequence"] = seq
chains_per_model.append(count_chains - sum(chains_per_model))
groups_per_chain.append(count_groups - sum(groups_per_chain))
encoder.chains_per_model = chains_per_model
encoder.groups_per_chain = groups_per_chain
encoder.num_atoms = count_atoms
encoder.num_groups = count_groups
encoder.num_chains = count_chains
encoder.num_models = count_models
encoder.finalize_structure()
encoder.write_file(filepath)
|