Spaces:
No application file
No application file
File size: 20,603 Bytes
b7731cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 |
# Copyright (C) 2004, Thomas Hamelryck ([email protected])
#
# This file is part of the Biopython distribution and governed by your
# choice of the "Biopython License Agreement" or the "BSD 3-Clause License".
# Please see the LICENSE file that should have been included as part of this
# package.
"""Vector class, including rotation-related functions."""
import numpy # type: ignore
from typing import Tuple, Optional
def m2rotaxis(m):
"""Return angles, axis pair that corresponds to rotation matrix m.
The case where ``m`` is the identity matrix corresponds to a singularity
where any rotation axis is valid. In that case, ``Vector([1, 0, 0])``,
is returned.
"""
eps = 1e-5
# Check for singularities a la
# http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/ # noqa
if (
abs(m[0, 1] - m[1, 0]) < eps
and abs(m[0, 2] - m[2, 0]) < eps
and abs(m[1, 2] - m[2, 1]) < eps
):
# Singularity encountered. Check if its 0 or 180 deg
if (
abs(m[0, 1] + m[1, 0]) < eps
and abs(m[0, 2] + m[2, 0]) < eps
and abs(m[1, 2] + m[2, 1]) < eps
and abs(m[0, 0] + m[1, 1] + m[2, 2] - 3) < eps
):
angle = 0
else:
angle = numpy.pi
else:
# Angle always between 0 and pi
# Sense of rotation is defined by axis orientation
t = 0.5 * (numpy.trace(m) - 1)
t = max(-1, t)
t = min(1, t)
angle = numpy.arccos(t)
if angle < 1e-15:
# Angle is 0
return 0.0, Vector(1, 0, 0)
elif angle < numpy.pi:
# Angle is smaller than pi
x = m[2, 1] - m[1, 2]
y = m[0, 2] - m[2, 0]
z = m[1, 0] - m[0, 1]
axis = Vector(x, y, z)
axis.normalize()
return angle, axis
else:
# Angle is pi - special case!
m00 = m[0, 0]
m11 = m[1, 1]
m22 = m[2, 2]
if m00 > m11 and m00 > m22:
x = numpy.sqrt(m00 - m11 - m22 + 0.5)
y = m[0, 1] / (2 * x)
z = m[0, 2] / (2 * x)
elif m11 > m00 and m11 > m22:
y = numpy.sqrt(m11 - m00 - m22 + 0.5)
x = m[0, 1] / (2 * y)
z = m[1, 2] / (2 * y)
else:
z = numpy.sqrt(m22 - m00 - m11 + 0.5)
x = m[0, 2] / (2 * z)
y = m[1, 2] / (2 * z)
axis = Vector(x, y, z)
axis.normalize()
return numpy.pi, axis
def vector_to_axis(line, point):
"""Vector to axis method.
Return the vector between a point and
the closest point on a line (ie. the perpendicular
projection of the point on the line).
:type line: L{Vector}
:param line: vector defining a line
:type point: L{Vector}
:param point: vector defining the point
"""
line = line.normalized()
np = point.norm()
angle = line.angle(point)
return point - line ** (np * numpy.cos(angle))
def rotaxis2m(theta, vector):
"""Calculate left multiplying rotation matrix.
Calculate a left multiplying rotation matrix that rotates
theta rad around vector.
:type theta: float
:param theta: the rotation angle
:type vector: L{Vector}
:param vector: the rotation axis
:return: The rotation matrix, a 3x3 Numeric array.
Examples
--------
>>> from numpy import pi
>>> from Bio.PDB.vectors import rotaxis2m
>>> from Bio.PDB.vectors import Vector
>>> m = rotaxis2m(pi, Vector(1, 0, 0))
>>> Vector(1, 2, 3).left_multiply(m)
<Vector 1.00, -2.00, -3.00>
"""
vector = vector.normalized()
c = numpy.cos(theta)
s = numpy.sin(theta)
t = 1 - c
x, y, z = vector.get_array()
rot = numpy.zeros((3, 3))
# 1st row
rot[0, 0] = t * x * x + c
rot[0, 1] = t * x * y - s * z
rot[0, 2] = t * x * z + s * y
# 2nd row
rot[1, 0] = t * x * y + s * z
rot[1, 1] = t * y * y + c
rot[1, 2] = t * y * z - s * x
# 3rd row
rot[2, 0] = t * x * z - s * y
rot[2, 1] = t * y * z + s * x
rot[2, 2] = t * z * z + c
return rot
rotaxis = rotaxis2m
def refmat(p, q):
"""Return a (left multiplying) matrix that mirrors p onto q.
:type p,q: L{Vector}
:return: The mirror operation, a 3x3 Numeric array.
Examples
--------
>>> from Bio.PDB.vectors import refmat
>>> p, q = Vector(1, 2, 3), Vector(2, 3, 5)
>>> mirror = refmat(p, q)
>>> qq = p.left_multiply(mirror)
>>> print(q)
<Vector 2.00, 3.00, 5.00>
>>> print(qq)
<Vector 1.21, 1.82, 3.03>
"""
p = p.normalized()
q = q.normalized()
if (p - q).norm() < 1e-5:
return numpy.identity(3)
pq = p - q
pq.normalize()
b = pq.get_array()
b.shape = (3, 1)
i = numpy.identity(3)
ref = i - 2 * numpy.dot(b, numpy.transpose(b))
return ref
def rotmat(p, q):
"""Return a (left multiplying) matrix that rotates p onto q.
:param p: moving vector
:type p: L{Vector}
:param q: fixed vector
:type q: L{Vector}
:return: rotation matrix that rotates p onto q
:rtype: 3x3 Numeric array
Examples
--------
>>> from Bio.PDB.vectors import rotmat
>>> p, q = Vector(1, 2, 3), Vector(2, 3, 5)
>>> r = rotmat(p, q)
>>> print(q)
<Vector 2.00, 3.00, 5.00>
>>> print(p)
<Vector 1.00, 2.00, 3.00>
>>> p.left_multiply(r)
<Vector 1.21, 1.82, 3.03>
"""
rot = numpy.dot(refmat(q, -p), refmat(p, -p))
return rot
def calc_angle(v1, v2, v3):
"""Calculate angle method.
Calculate the angle between 3 vectors
representing 3 connected points.
:param v1, v2, v3: the tree points that define the angle
:type v1, v2, v3: L{Vector}
:return: angle
:rtype: float
"""
v1 = v1 - v2
v3 = v3 - v2
return v1.angle(v3)
def calc_dihedral(v1, v2, v3, v4):
"""Calculate dihedral angle method.
Calculate the dihedral angle between 4 vectors
representing 4 connected points. The angle is in
]-pi, pi].
:param v1, v2, v3, v4: the four points that define the dihedral angle
:type v1, v2, v3, v4: L{Vector}
"""
ab = v1 - v2
cb = v3 - v2
db = v4 - v3
u = ab**cb
v = db**cb
w = u**v
angle = u.angle(v)
# Determine sign of angle
try:
if cb.angle(w) > 0.001:
angle = -angle
except ZeroDivisionError:
# dihedral=pi
pass
return angle
class Vector:
"""3D vector."""
def __init__(self, x, y=None, z=None):
"""Initialize the class."""
if y is None and z is None:
# Array, list, tuple...
if len(x) != 3:
raise ValueError("Vector: x is not a list/tuple/array of 3 numbers")
self._ar = numpy.array(x, "d")
else:
# Three numbers
self._ar = numpy.array((x, y, z), "d")
def __repr__(self):
"""Return vector 3D coordinates."""
x, y, z = self._ar
return f"<Vector {x:.2f}, {y:.2f}, {z:.2f}>"
def __neg__(self):
"""Return Vector(-x, -y, -z)."""
a = -self._ar
return Vector(a)
def __add__(self, other):
"""Return Vector+other Vector or scalar."""
if isinstance(other, Vector):
a = self._ar + other._ar
else:
a = self._ar + numpy.array(other)
return Vector(a)
def __sub__(self, other):
"""Return Vector-other Vector or scalar."""
if isinstance(other, Vector):
a = self._ar - other._ar
else:
a = self._ar - numpy.array(other)
return Vector(a)
def __mul__(self, other):
"""Return Vector.Vector (dot product)."""
return sum(self._ar * other._ar)
def __truediv__(self, x):
"""Return Vector(coords/a)."""
a = self._ar / numpy.array(x)
return Vector(a)
def __pow__(self, other):
"""Return VectorxVector (cross product) or Vectorxscalar."""
if isinstance(other, Vector):
a, b, c = self._ar
d, e, f = other._ar
c1 = numpy.linalg.det(numpy.array(((b, c), (e, f))))
c2 = -numpy.linalg.det(numpy.array(((a, c), (d, f))))
c3 = numpy.linalg.det(numpy.array(((a, b), (d, e))))
return Vector(c1, c2, c3)
else:
a = self._ar * numpy.array(other)
return Vector(a)
def __getitem__(self, i):
"""Return value of array index i."""
return self._ar[i]
def __setitem__(self, i, value):
"""Assign values to array index i."""
self._ar[i] = value
def __contains__(self, i):
"""Validate if i is in array."""
return i in self._ar
def norm(self):
"""Return vector norm."""
return numpy.sqrt(sum(self._ar * self._ar))
def normsq(self):
"""Return square of vector norm."""
return abs(sum(self._ar * self._ar))
def normalize(self):
"""Normalize the Vector object.
Changes the state of ``self`` and doesn't return a value.
If you need to chain function calls or create a new object
use the ``normalized`` method.
"""
if self.norm():
self._ar = self._ar / self.norm()
def normalized(self):
"""Return a normalized copy of the Vector.
To avoid allocating new objects use the ``normalize`` method.
"""
v = self.copy()
v.normalize()
return v
def angle(self, other):
"""Return angle between two vectors."""
n1 = self.norm()
n2 = other.norm()
c = (self * other) / (n1 * n2)
# Take care of roundoff errors
c = min(c, 1)
c = max(-1, c)
return numpy.arccos(c)
def get_array(self):
"""Return (a copy of) the array of coordinates."""
return numpy.array(self._ar)
def left_multiply(self, matrix):
"""Return Vector=Matrix x Vector."""
a = numpy.dot(matrix, self._ar)
return Vector(a)
def right_multiply(self, matrix):
"""Return Vector=Vector x Matrix."""
a = numpy.dot(self._ar, matrix)
return Vector(a)
def copy(self):
"""Return a deep copy of the Vector."""
return Vector(self._ar)
"""Homogeneous matrix geometry routines.
Rotation, translation, scale, and coordinate transformations.
Robert T. Miller 2019
"""
def homog_rot_mtx(angle_rads: float, axis: str) -> numpy.array:
"""Generate a 4x4 single-axis numpy rotation matrix.
:param float angle_rads: the desired rotation angle in radians
:param char axis: character specifying the rotation axis
"""
cosang = numpy.cos(angle_rads)
sinang = numpy.sin(angle_rads)
if "z" == axis:
return numpy.array(
(
(cosang, -sinang, 0, 0),
(sinang, cosang, 0, 0),
(0, 0, 1, 0),
(0, 0, 0, 1),
),
dtype=numpy.float64,
)
elif "y" == axis:
return numpy.array(
(
(cosang, 0, sinang, 0),
(0, 1, 0, 0),
(-sinang, 0, cosang, 0),
(0, 0, 0, 1),
),
dtype=numpy.float64,
)
else:
return numpy.array(
(
(1, 0, 0, 0),
(0, cosang, -sinang, 0),
(0, sinang, cosang, 0),
(0, 0, 0, 1),
),
dtype=numpy.float64,
)
def set_Z_homog_rot_mtx(angle_rads: float, mtx: numpy.ndarray):
"""Update existing Z rotation matrix to new angle."""
cosang = numpy.cos(angle_rads)
sinang = numpy.sin(angle_rads)
mtx[0][0] = mtx[1][1] = cosang
mtx[1][0] = sinang
mtx[0][1] = -sinang
def set_Y_homog_rot_mtx(angle_rads: float, mtx: numpy.ndarray):
"""Update existing Y rotation matrix to new angle."""
cosang = numpy.cos(angle_rads)
sinang = numpy.sin(angle_rads)
mtx[0][0] = mtx[2][2] = cosang
mtx[0][2] = sinang
mtx[2][0] = -sinang
def set_X_homog_rot_mtx(angle_rads: float, mtx: numpy.ndarray):
"""Update existing X rotation matrix to new angle."""
cosang = numpy.cos(angle_rads)
sinang = numpy.sin(angle_rads)
mtx[1][1] = mtx[2][2] = cosang
mtx[2][1] = sinang
mtx[1][2] = -sinang
def homog_trans_mtx(x: float, y: float, z: float) -> numpy.array:
"""Generate a 4x4 numpy translation matrix.
:param x, y, z: translation in each axis
"""
return numpy.array(
((1, 0, 0, x), (0, 1, 0, y), (0, 0, 1, z), (0, 0, 0, 1)),
dtype=numpy.float64,
)
def set_homog_trans_mtx(x: float, y: float, z: float, mtx: numpy.ndarray):
"""Update existing translation matrix to new values."""
mtx[0][3] = x
mtx[1][3] = y
mtx[2][3] = z
def homog_scale_mtx(scale: float) -> numpy.array:
"""Generate a 4x4 numpy scaling matrix.
:param float scale: scale multiplier
"""
return numpy.array(
[[scale, 0, 0, 0], [0, scale, 0, 0], [0, 0, scale, 0], [0, 0, 0, 1]],
dtype=numpy.float64,
)
def _get_azimuth(x: float, y: float) -> float:
sign_y = -1.0 if y < 0.0 else 1.0
sign_x = -1.0 if x < 0.0 else 1.0
return (
numpy.arctan2(y, x)
if (0 != x and 0 != y)
else (numpy.pi / 2.0 * sign_y) # +/-90 if X=0, Y!=0
if 0 != y
else numpy.pi
if sign_x < 0.0 # 180 if Y=0, X < 0
else 0.0 # 0 if Y=0, X >= 0
)
def get_spherical_coordinates(xyz: numpy.array) -> Tuple[float, float, float]:
"""Compute spherical coordinates (r, azimuth, polar_angle) for X,Y,Z point.
:param array xyz: column vector (3 row x 1 column numpy array)
:return: tuple of r, azimuth, polar_angle for input coordinate
"""
r = numpy.linalg.norm(xyz)
if 0 == r:
return (0, 0, 0)
azimuth = _get_azimuth(xyz[0], xyz[1])
polar_angle = numpy.arccos(xyz[2] / r)
return (r, azimuth, polar_angle)
gtm = numpy.identity(4, dtype=numpy.float64)
gmrz = numpy.identity(4, dtype=numpy.float64)
gmry = numpy.identity(4, dtype=numpy.float64)
gmrz2 = numpy.identity(4, dtype=numpy.float64)
def coord_space(
a0: numpy.ndarray, a1: numpy.ndarray, a2: numpy.ndarray, rev: bool = False
) -> Tuple[numpy.ndarray, Optional[numpy.ndarray]]:
"""Generate transformation matrix to coordinate space defined by 3 points.
New coordinate space will have:
acs[0] on XZ plane
acs[1] origin
acs[2] on +Z axis
:param numpy column array x3 acs: X,Y,Z column input coordinates x3
:param bool rev: if True, also return reverse transformation matrix
(to return from coord_space)
:returns: 4x4 numpy array, x2 if rev=True
"""
# dbg = False
# if dbg:
# print(a0.transpose())
# print(a1.transpose())
# print(a2.transpose())
# a0 = acs[0]
# a1 = acs[1]
# a2 = acs[2]
global gtm
global gmry
global gmrz, gmrz2
tm = gtm
mry = gmry
mrz = gmrz
mrz2 = gmrz2
# tx acs[1] to origin
# tm = homog_trans_mtx(-a1[0][0], -a1[1][0], -a1[2][0])
set_homog_trans_mtx(-a1[0], -a1[1], -a1[2], tm)
# directly translate a2 using a1
p = a2 - a1
sc = get_spherical_coordinates(p)
# if dbg:
# print("p", p.transpose())
# print("sc", sc)
# rotate translated a2 -azimuth about Z
set_Z_homog_rot_mtx(-sc[1], mrz)
# rotate translated a2 -polar_angle about Y
set_Y_homog_rot_mtx(-sc[2], mry)
# mt completes a1-a2 on Z-axis, still need to align a0 with XZ plane
# mt = mry @ mrz @ tm # python 3.5 and later
mt = gmry.dot(gmrz.dot(gtm))
# if dbg:
# print("tm:\n", tm)
# print("mrz:\n", mrz)
# print("mry:\n", mry)
# # print("mt ", mt)
p = mt.dot(a0)
# if dbg:
# print("mt:\n", mt, "\na0:\n", a0, "\np:\n", p)
# need azimuth of translated a0
# sc2 = get_spherical_coordinates(p)
# print(sc2)
azimuth2 = _get_azimuth(p[0], p[1])
# rotate a0 -azimuth2 about Z to align with X
# mrz2 = homog_rot_mtx(-azimuth2, "z")
set_Z_homog_rot_mtx(-azimuth2, mrz2)
# mt = mrz2 @ mt
mt = gmrz2.dot(mt)
# if dbg:
# print("mt:", mt, "\na0:", a0, "\np:", p)
# # print(p, "\n", azimuth2, "\n", mrz2, "\n", mt)
# if dbg:
# print("mt:\n", mt)
# print("<<<<<<==============================")
if not rev:
return mt, None
# rev=True, so generate the reverse transformation
# rotate a0 theta about Z, reversing alignment with X
# mrz2 = homog_rot_mtx(azimuth2, "z")
set_Z_homog_rot_mtx(azimuth2, mrz2)
# rotate a2 phi about Y
# mry = homog_rot_mtx(sc[2], "y")
set_Y_homog_rot_mtx(sc[2], mry)
# rotate a2 theta about Z
# mrz = homog_rot_mtx(sc[1], "z")
set_Z_homog_rot_mtx(sc[1], mrz)
# translation matrix origin to a1
# tm = homog_trans_mtx(a1[0][0], a1[1][0], a1[2][0])
set_homog_trans_mtx(a1[0], a1[1], a1[2], tm)
# mr = tm @ mrz @ mry @ mrz2
mr = gtm.dot(gmrz.dot(gmry.dot(gmrz2)))
# mr = numpy.dot(tm, numpy.dot(mrz, numpy.dot(mry, mrz2)))
return mt, mr
def multi_rot_Z(angle_rads: numpy.ndarray) -> numpy.ndarray:
"""Create [entries] numpy Z rotation matrices for [entries] angles.
:param entries: int number of matrices generated.
:param angle_rads: numpy array of angles
:returns: entries x 4 x 4 homogeneous rotation matrices
"""
rz = numpy.empty((angle_rads.shape[0], 4, 4))
rz[...] = numpy.identity(4)
rz[:, 0, 0] = rz[:, 1, 1] = numpy.cos(angle_rads)
rz[:, 1, 0] = numpy.sin(angle_rads)
rz[:, 0, 1] = -rz[:, 1, 0]
return rz
def multi_rot_Y(angle_rads: numpy.ndarray) -> numpy.ndarray:
"""Create [entries] numpy Y rotation matrices for [entries] angles.
:param entries: int number of matrices generated.
:param angle_rads: numpy array of angles
:returns: entries x 4 x 4 homogeneous rotation matrices
"""
ry = numpy.empty((angle_rads.shape[0], 4, 4))
ry[...] = numpy.identity(4)
ry[:, 0, 0] = ry[:, 2, 2] = numpy.cos(angle_rads)
ry[:, 0, 2] = numpy.sin(angle_rads)
ry[:, 2, 0] = -ry[:, 0, 2]
return ry
def multi_coord_space(a3: numpy.ndarray, dLen: int, rev: bool = False) -> numpy.ndarray:
"""Generate [dLen] transform matrices to coord space defined by 3 points.
New coordinate space will have:
acs[0] on XZ plane
acs[1] origin
acs[2] on +Z axis
:param numpy array [entries]x3x3 [entries] XYZ coords for 3 atoms
:param bool rev: if True, also return reverse transformation matrix
(to return from coord_space)
:returns: [entries] 4x4 numpy arrays, x2 if rev=True
"""
# build tm translation matrix: atom1 to origin
tm = numpy.empty((dLen, 4, 4))
tm[...] = numpy.identity(4)
tm[:, 0:3, 3] = -a3[:, 1, 0:3]
# directly translate a2 into new space using a1
p = a3[:, 2] - a3[:, 1]
# get spherical coords of translated a2 (p)
r = numpy.linalg.norm(p, axis=1)
azimuth = numpy.arctan2(p[:, 1], p[:, 0])
polar_angle = numpy.arccos(numpy.divide(p[:, 2], r, where=r != 0))
# build rz rotation matrix: translated a2 -azimuth around Z
# (enables next step rotating around Y to align with Z)
rz = multi_rot_Z(-azimuth)
# build ry rotation matrix: translated a2 -polar_angle around Y
ry = multi_rot_Y(-polar_angle)
# mt completes a1-a2 on Z-axis, still need to align a0 with XZ plane
mt = numpy.matmul(ry, numpy.matmul(rz, tm))
# transform a0 to mt space
p = numpy.matmul(mt, a3[:, 0].reshape(-1, 4, 1)).reshape(-1, 4)
# print(f"mt[0]:\n{mt[0]}\na3[0][0] (a0):\n{a3[0][0]}\np[0]:\n{p[0]}")
# get azimuth of translated a0
azimuth2 = numpy.arctan2(p[:, 1], p[:, 0])
# build rotation matrix rz2 to rotate a0 -azimuth about Z to align with X
rz2 = multi_rot_Z(-azimuth2)
# update mt to be complete transform into hedron coordinate space
if not rev:
return numpy.matmul(rz2, mt[:])
# rev=True, so generate the reverse transformation
mt = numpy.matmul(rz2, mt[:])
# rotate a0 theta about Z, reversing alignment with X
mrz2 = multi_rot_Z(azimuth2)
# rotate a2 phi about Y
mry = multi_rot_Y(polar_angle)
# rotate a2 theta about Z
mrz = multi_rot_Z(azimuth)
# translation matrix origin to a1
tm[:, 0:3, 3] = a3[:, 1, 0:3]
mr = tm @ mrz @ mry @ mrz2 # tm.dot(mrz.dot(mry.dot(mrz2)))
return numpy.array([mt, mr])
|