Spaces:
No application file
No application file
File size: 24,309 Bytes
b7731cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 |
# Copyright (C) 2013 by Yanbo Ye ([email protected])
#
# This file is part of the Biopython distribution and governed by your
# choice of the "Biopython License Agreement" or the "BSD 3-Clause License".
# Please see the LICENSE file that should have been included as part of this
# package.
"""Classes and methods for finding consensus trees.
This module contains a ``_BitString`` class to assist the consensus tree
searching and some common consensus algorithms such as strict, majority rule and
adam consensus.
"""
import random
import itertools
from ast import literal_eval
from Bio.Phylo import BaseTree
from Bio.Align import MultipleSeqAlignment
class _BitString(str):
"""Helper class for binary string data (PRIVATE).
Assistant class of binary string data used for storing and
counting compatible clades in consensus tree searching. It includes
some binary manipulation(&|^~) methods.
_BitString is a sub-class of ``str`` object that only accepts two
characters('0' and '1'), with additional functions for binary-like
manipulation(&|^~). It is used to count and store the clades in
multiple trees in consensus tree searching. During counting, the
clades will be considered the same if their terminals(in terms of
``name`` attribute) are the same.
For example, let's say two trees are provided as below to search
their strict consensus tree::
tree1: (((A, B), C),(D, E))
tree2: ((A, (B, C)),(D, E))
For both trees, a _BitString object '11111' will represent their
root clade. Each '1' stands for the terminal clade in the list
[A, B, C, D, E](the order might not be the same, it's determined
by the ``get_terminal`` method of the first tree provided). For
the clade ((A, B), C) in tree1 and (A, (B, C)) in tree2, they both
can be represented by '11100'. Similarly, '11000' represents clade
(A, B) in tree1, '01100' represents clade (B, C) in tree2, and '00011'
represents clade (D, E) in both trees.
So, with the ``_count_clades`` function in this module, finally we
can get the clade counts and their _BitString representation as follows
(the root and terminals are omitted)::
clade _BitString count
ABC '11100' 2
DE '00011' 2
AB '11000' 1
BC '01100' 1
To get the _BitString representation of a clade, we can use the following
code snippet::
# suppose we are provided with a tree list, the first thing to do is
# to get all the terminal names in the first tree
term_names = [term.name for term in trees[0].get_terminals()]
# for a specific clade in any of the tree, also get its terminal names
clade_term_names = [term.name for term in clade.get_terminals()]
# then create a boolean list
boolvals = [name in clade_term_names for name in term_names]
# create the string version and pass it to _BitString
bitstr = _BitString(''.join(map(str, map(int, boolvals))))
# or, equivalently:
bitstr = _BitString.from_bool(boolvals)
To convert back::
# get all the terminal clades of the first tree
terms = [term for term in trees[0].get_terminals()]
# get the index of terminal clades in bitstr
index_list = bitstr.index_one()
# get all terminal clades by index
clade_terms = [terms[i] for i in index_list]
# create a new calde and append all the terminal clades
new_clade = BaseTree.Clade()
new_clade.clades.extend(clade_terms)
Examples
--------
>>> from Bio.Phylo.Consensus import _BitString
>>> bitstr1 = _BitString('11111')
>>> bitstr2 = _BitString('11100')
>>> bitstr3 = _BitString('01101')
>>> bitstr1
_BitString('11111')
>>> bitstr2 & bitstr3
_BitString('01100')
>>> bitstr2 | bitstr3
_BitString('11101')
>>> bitstr2 ^ bitstr3
_BitString('10001')
>>> bitstr2.index_one()
[0, 1, 2]
>>> bitstr3.index_one()
[1, 2, 4]
>>> bitstr3.index_zero()
[0, 3]
>>> bitstr1.contains(bitstr2)
True
>>> bitstr2.contains(bitstr3)
False
>>> bitstr2.independent(bitstr3)
False
>>> bitstr1.iscompatible(bitstr2)
True
>>> bitstr2.iscompatible(bitstr3)
False
"""
def __new__(cls, strdata):
"""Init from a binary string data."""
if isinstance(strdata, str) and len(strdata) == strdata.count(
"0"
) + strdata.count("1"):
return str.__new__(cls, strdata)
else:
raise TypeError(
"The input should be a binary string composed of '0' and '1'"
)
def __and__(self, other):
selfint = literal_eval("0b" + self)
otherint = literal_eval("0b" + other)
resultint = selfint & otherint
return _BitString(bin(resultint)[2:].zfill(len(self)))
def __or__(self, other):
selfint = literal_eval("0b" + self)
otherint = literal_eval("0b" + other)
resultint = selfint | otherint
return _BitString(bin(resultint)[2:].zfill(len(self)))
def __xor__(self, other):
selfint = literal_eval("0b" + self)
otherint = literal_eval("0b" + other)
resultint = selfint ^ otherint
return _BitString(bin(resultint)[2:].zfill(len(self)))
def __rand__(self, other):
selfint = literal_eval("0b" + self)
otherint = literal_eval("0b" + other)
resultint = otherint & selfint
return _BitString(bin(resultint)[2:].zfill(len(self)))
def __ror__(self, other):
selfint = literal_eval("0b" + self)
otherint = literal_eval("0b" + other)
resultint = otherint | selfint
return _BitString(bin(resultint)[2:].zfill(len(self)))
def __rxor__(self, other):
selfint = literal_eval("0b" + self)
otherint = literal_eval("0b" + other)
resultint = otherint ^ selfint
return _BitString(bin(resultint)[2:].zfill(len(self)))
def __repr__(self):
return "_BitString(" + str.__repr__(self) + ")"
def index_one(self):
"""Return a list of positions where the element is '1'."""
return [i for i, n in enumerate(self) if n == "1"]
def index_zero(self):
"""Return a list of positions where the element is '0'."""
return [i for i, n in enumerate(self) if n == "0"]
def contains(self, other):
"""Check if current bitstr1 contains another one bitstr2.
That is to say, the bitstr2.index_one() is a subset of
bitstr1.index_one().
Examples:
"011011" contains "011000", "011001", "000011"
Be careful, "011011" also contains "000000". Actually, all _BitString
objects contain all-zero _BitString of the same length.
"""
xorbit = self ^ other
return xorbit.count("1") == self.count("1") - other.count("1")
def independent(self, other):
"""Check if current bitstr1 is independent of another one bitstr2.
That is to say the bitstr1.index_one() and bitstr2.index_one() have
no intersection.
Be careful, all _BitString objects are independent of all-zero _BitString
of the same length.
"""
xorbit = self ^ other
return xorbit.count("1") == self.count("1") + other.count("1")
def iscompatible(self, other):
"""Check if current bitstr1 is compatible with another bitstr2.
Two conditions are considered as compatible:
1. bitstr1.contain(bitstr2) or vice versa;
2. bitstr1.independent(bitstr2).
"""
return self.contains(other) or other.contains(self) or self.independent(other)
@classmethod
def from_bool(cls, bools):
return cls("".join(map(str, map(int, bools))))
def strict_consensus(trees):
"""Search strict consensus tree from multiple trees.
:Parameters:
trees : iterable
iterable of trees to produce consensus tree.
"""
trees_iter = iter(trees)
first_tree = next(trees_iter)
terms = first_tree.get_terminals()
bitstr_counts, tree_count = _count_clades(itertools.chain([first_tree], trees_iter))
# Store bitstrs for strict clades
strict_bitstrs = [
bitstr for bitstr, t in bitstr_counts.items() if t[0] == tree_count
]
strict_bitstrs.sort(key=lambda bitstr: bitstr.count("1"), reverse=True)
# Create root
root = BaseTree.Clade()
if strict_bitstrs[0].count("1") == len(terms):
root.clades.extend(terms)
else:
raise ValueError("Taxons in provided trees should be consistent")
# make a bitstr to clades dict and store root clade
bitstr_clades = {strict_bitstrs[0]: root}
# create inner clades
for bitstr in strict_bitstrs[1:]:
clade_terms = [terms[i] for i in bitstr.index_one()]
clade = BaseTree.Clade()
clade.clades.extend(clade_terms)
for bs, c in bitstr_clades.items():
# check if it should be the parent of current clade
if bs.contains(bitstr):
# remove old bitstring
del bitstr_clades[bs]
# update clade childs
new_childs = [child for child in c.clades if child not in clade_terms]
c.clades = new_childs
# set current clade as child of c
c.clades.append(clade)
# update bitstring
bs = bs ^ bitstr
# update clade
bitstr_clades[bs] = c
break
# put new clade
bitstr_clades[bitstr] = clade
return BaseTree.Tree(root=root)
def majority_consensus(trees, cutoff=0):
"""Search majority rule consensus tree from multiple trees.
This is a extend majority rule method, which means the you can set any
cutoff between 0 ~ 1 instead of 0.5. The default value of cutoff is 0 to
create a relaxed binary consensus tree in any condition (as long as one of
the provided trees is a binary tree). The branch length of each consensus
clade in the result consensus tree is the average length of all counts for
that clade.
:Parameters:
trees : iterable
iterable of trees to produce consensus tree.
"""
tree_iter = iter(trees)
first_tree = next(tree_iter)
terms = first_tree.get_terminals()
bitstr_counts, tree_count = _count_clades(itertools.chain([first_tree], tree_iter))
# Sort bitstrs by descending #occurrences, then #tips, then tip order
bitstrs = sorted(
bitstr_counts.keys(),
key=lambda bitstr: (bitstr_counts[bitstr][0], bitstr.count("1"), str(bitstr)),
reverse=True,
)
root = BaseTree.Clade()
if bitstrs[0].count("1") == len(terms):
root.clades.extend(terms)
else:
raise ValueError("Taxons in provided trees should be consistent")
# Make a bitstr-to-clades dict and store root clade
bitstr_clades = {bitstrs[0]: root}
# create inner clades
for bitstr in bitstrs[1:]:
# apply majority rule
count_in_trees, branch_length_sum = bitstr_counts[bitstr]
confidence = 100.0 * count_in_trees / tree_count
if confidence < cutoff * 100.0:
break
clade_terms = [terms[i] for i in bitstr.index_one()]
clade = BaseTree.Clade()
clade.clades.extend(clade_terms)
clade.confidence = confidence
clade.branch_length = branch_length_sum / count_in_trees
bsckeys = sorted(bitstr_clades, key=lambda bs: bs.count("1"), reverse=True)
# check if current clade is compatible with previous clades and
# record its possible parent and child clades.
compatible = True
parent_bitstr = None
child_bitstrs = [] # multiple independent childs
for bs in bsckeys:
if not bs.iscompatible(bitstr):
compatible = False
break
# assign the closest ancestor as its parent
# as bsckeys is sorted, it should be the last one
if bs.contains(bitstr):
parent_bitstr = bs
# assign the closest descendant as its child
# the largest and independent clades
if (
bitstr.contains(bs)
and bs != bitstr
and all(c.independent(bs) for c in child_bitstrs)
):
child_bitstrs.append(bs)
if not compatible:
continue
if parent_bitstr:
# insert current clade; remove old bitstring
parent_clade = bitstr_clades.pop(parent_bitstr)
# update parent clade childs
parent_clade.clades = [
c for c in parent_clade.clades if c not in clade_terms
]
# set current clade as child of parent_clade
parent_clade.clades.append(clade)
# update bitstring
# parent = parent ^ bitstr
# update clade
bitstr_clades[parent_bitstr] = parent_clade
if child_bitstrs:
remove_list = []
for c in child_bitstrs:
remove_list.extend(c.index_one())
child_clade = bitstr_clades[c]
parent_clade.clades.remove(child_clade)
clade.clades.append(child_clade)
remove_terms = [terms[i] for i in remove_list]
clade.clades = [c for c in clade.clades if c not in remove_terms]
# put new clade
bitstr_clades[bitstr] = clade
if (len(bitstr_clades) == len(terms) - 1) or (
len(bitstr_clades) == len(terms) - 2 and len(root.clades) == 3
):
break
return BaseTree.Tree(root=root)
def adam_consensus(trees):
"""Search Adam Consensus tree from multiple trees.
:Parameters:
trees : list
list of trees to produce consensus tree.
"""
clades = [tree.root for tree in trees]
return BaseTree.Tree(root=_part(clades), rooted=True)
def _part(clades):
"""Recursive function for Adam Consensus algorithm (PRIVATE)."""
new_clade = None
terms = clades[0].get_terminals()
term_names = [term.name for term in terms]
if len(terms) == 1 or len(terms) == 2:
new_clade = clades[0]
else:
bitstrs = {_BitString("1" * len(terms))}
for clade in clades:
for child in clade.clades:
bitstr = _clade_to_bitstr(child, term_names)
to_remove = set()
to_add = set()
for bs in bitstrs:
if bs == bitstr:
continue
elif bs.contains(bitstr):
to_add.add(bitstr)
to_add.add(bs ^ bitstr)
to_remove.add(bs)
elif bitstr.contains(bs):
to_add.add(bs ^ bitstr)
elif not bs.independent(bitstr):
to_add.add(bs & bitstr)
to_add.add(bs & bitstr ^ bitstr)
to_add.add(bs & bitstr ^ bs)
to_remove.add(bs)
# bitstrs = bitstrs | to_add
bitstrs ^= to_remove
if to_add:
for ta in sorted(to_add, key=lambda bs: bs.count("1")):
independent = True
for bs in bitstrs:
if not ta.independent(bs):
independent = False
break
if independent:
bitstrs.add(ta)
new_clade = BaseTree.Clade()
for bitstr in sorted(bitstrs):
indices = bitstr.index_one()
if len(indices) == 1:
new_clade.clades.append(terms[indices[0]])
elif len(indices) == 2:
bifur_clade = BaseTree.Clade()
bifur_clade.clades.append(terms[indices[0]])
bifur_clade.clades.append(terms[indices[1]])
new_clade.clades.append(bifur_clade)
elif len(indices) > 2:
part_names = [term_names[i] for i in indices]
next_clades = []
for clade in clades:
next_clades.append(_sub_clade(clade, part_names))
# next_clades = [clade.common_ancestor([clade.find_any(name=name) for name in part_names]) for clade in clades]
new_clade.clades.append(_part(next_clades))
return new_clade
def _sub_clade(clade, term_names):
"""Extract a compatible subclade that only contains the given terminal names (PRIVATE)."""
term_clades = [clade.find_any(name) for name in term_names]
sub_clade = clade.common_ancestor(term_clades)
if len(term_names) != sub_clade.count_terminals():
temp_clade = BaseTree.Clade()
temp_clade.clades.extend(term_clades)
for c in sub_clade.find_clades(terminal=False, order="preorder"):
if c == sub_clade.root:
continue
childs = set(c.find_clades(terminal=True)) & set(term_clades)
if childs:
for tc in temp_clade.find_clades(terminal=False, order="preorder"):
tc_childs = set(tc.clades)
tc_new_clades = tc_childs - childs
if childs.issubset(tc_childs) and tc_new_clades:
tc.clades = list(tc_new_clades)
child_clade = BaseTree.Clade()
child_clade.clades.extend(list(childs))
tc.clades.append(child_clade)
sub_clade = temp_clade
return sub_clade
def _count_clades(trees):
"""Count distinct clades (different sets of terminal names) in the trees (PRIVATE).
Return a tuple first a dict of bitstring (representing clade) and a tuple of its count of
occurrences and sum of branch length for that clade, second the number of trees processed.
:Parameters:
trees : iterable
An iterable that returns the trees to count
"""
bitstrs = {}
tree_count = 0
for tree in trees:
tree_count += 1
clade_bitstrs = _tree_to_bitstrs(tree)
for clade in tree.find_clades(terminal=False):
bitstr = clade_bitstrs[clade]
if bitstr in bitstrs:
count, sum_bl = bitstrs[bitstr]
count += 1
sum_bl += clade.branch_length or 0
bitstrs[bitstr] = (count, sum_bl)
else:
bitstrs[bitstr] = (1, clade.branch_length or 0)
return bitstrs, tree_count
def get_support(target_tree, trees, len_trees=None):
"""Calculate branch support for a target tree given bootstrap replicate trees.
:Parameters:
target_tree : Tree
tree to calculate branch support for.
trees : iterable
iterable of trees used to calculate branch support.
len_trees : int
optional count of replicates in trees. len_trees must be provided
when len(trees) is not a valid operation.
"""
term_names = sorted(term.name for term in target_tree.find_clades(terminal=True))
bitstrs = {}
size = len_trees
if size is None:
try:
size = len(trees)
except TypeError:
raise TypeError(
"Trees does not support len(trees), "
"you must provide the number of replicates in trees "
"as the optional parameter len_trees."
) from None
for clade in target_tree.find_clades(terminal=False):
bitstr = _clade_to_bitstr(clade, term_names)
bitstrs[bitstr] = (clade, 0)
for tree in trees:
for clade in tree.find_clades(terminal=False):
bitstr = _clade_to_bitstr(clade, term_names)
if bitstr in bitstrs:
c, t = bitstrs[bitstr]
c.confidence = (t + 1) * 100.0 / size
bitstrs[bitstr] = (c, t + 1)
return target_tree
def bootstrap(msa, times):
"""Generate bootstrap replicates from a multiple sequence alignment (OBSOLETE).
:Parameters:
msa : MultipleSeqAlignment
multiple sequence alignment to generate replicates.
times : int
number of bootstrap times.
"""
length = len(msa[0])
i = 0
while i < times:
i += 1
item = None
for j in range(length):
col = random.randint(0, length - 1)
if not item:
item = msa[:, col : col + 1]
else:
item += msa[:, col : col + 1]
yield item
def bootstrap_trees(alignment, times, tree_constructor):
"""Generate bootstrap replicate trees from a multiple sequence alignment.
:Parameters:
alignment : Alignment or MultipleSeqAlignment object
multiple sequence alignment to generate replicates.
times : int
number of bootstrap times.
tree_constructor : TreeConstructor
tree constructor to be used to build trees.
"""
if isinstance(alignment, MultipleSeqAlignment):
length = len(alignment[0])
for i in range(times):
bootstrapped_alignment = None
for j in range(length):
col = random.randint(0, length - 1)
if bootstrapped_alignment is None:
bootstrapped_alignment = alignment[:, col : col + 1]
else:
bootstrapped_alignment += alignment[:, col : col + 1]
tree = tree_constructor.build_tree(alignment)
yield tree
else:
n, m = alignment.shape
for i in range(times):
cols = [random.randint(0, m - 1) for j in range(m)]
tree = tree_constructor.build_tree(alignment[:, cols])
yield tree
def bootstrap_consensus(alignment, times, tree_constructor, consensus):
"""Consensus tree of a series of bootstrap trees for a multiple sequence alignment.
:Parameters:
alignment : Alignment or MultipleSeqAlignment object
Multiple sequence alignment to generate replicates.
times : int
Number of bootstrap times.
tree_constructor : TreeConstructor
Tree constructor to be used to build trees.
consensus : function
Consensus method in this module: ``strict_consensus``,
``majority_consensus``, ``adam_consensus``.
"""
trees = bootstrap_trees(alignment, times, tree_constructor)
tree = consensus(trees)
return tree
def _clade_to_bitstr(clade, tree_term_names):
"""Create a BitString representing a clade, given ordered tree taxon names (PRIVATE)."""
clade_term_names = {term.name for term in clade.find_clades(terminal=True)}
return _BitString.from_bool((name in clade_term_names) for name in tree_term_names)
def _tree_to_bitstrs(tree):
"""Create a dict of a tree's clades to corresponding BitStrings (PRIVATE)."""
clades_bitstrs = {}
term_names = [term.name for term in tree.find_clades(terminal=True)]
for clade in tree.find_clades(terminal=False):
bitstr = _clade_to_bitstr(clade, term_names)
clades_bitstrs[clade] = bitstr
return clades_bitstrs
def _bitstring_topology(tree):
"""Generate a branch length dict for a tree, keyed by BitStrings (PRIVATE).
Create a dict of all clades' BitStrings to the corresponding branch
lengths (rounded to 5 decimal places).
"""
bitstrs = {}
for clade, bitstr in _tree_to_bitstrs(tree).items():
bitstrs[bitstr] = round(clade.branch_length or 0.0, 5)
return bitstrs
def _equal_topology(tree1, tree2):
"""Are two trees are equal in terms of topology and branch lengths (PRIVATE).
(Branch lengths checked to 5 decimal places.)
"""
term_names1 = {term.name for term in tree1.find_clades(terminal=True)}
term_names2 = {term.name for term in tree2.find_clades(terminal=True)}
return (term_names1 == term_names2) and (
_bitstring_topology(tree1) == _bitstring_topology(tree2)
)
|