Spaces:
No application file
No application file
File size: 28,939 Bytes
b7731cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 |
# Copyright 2012 by Wibowo Arindrarto. All rights reserved.
# This file is part of the Biopython distribution and governed by your
# choice of the "Biopython License Agreement" or the "BSD 3-Clause License".
# Please see the LICENSE file that should have been included as part of this
# package.
"""Biopython interface for sequence search program outputs.
The SearchIO submodule provides parsers, indexers, and writers for outputs from
various sequence search programs. It provides an API similar to SeqIO and
AlignIO, with the following main functions: ``parse``, ``read``, ``to_dict``,
``index``, ``index_db``, ``write``, and ``convert``.
SearchIO parses a search output file's contents into a hierarchy of four nested
objects: QueryResult, Hit, HSP, and HSPFragment. Each of them models a part of
the search output file:
- QueryResult represents a search query. This is the main object returned
by the input functions and it contains all other objects.
- Hit represents a database hit,
- HSP represents high-scoring alignment region(s) in the hit,
- HSPFragment represents a contiguous alignment within the HSP
In addition to the four objects above, SearchIO is also tightly integrated with
the SeqRecord objects (see SeqIO) and MultipleSeqAlignment objects (see
AlignIO). SeqRecord objects are used to store the actual matching hit and query
sequences, while MultipleSeqAlignment objects store the alignment between them.
A detailed description of these objects' features and their example usages are
available in their respective documentations.
Input
=====
The main function for parsing search output files is Bio.SearchIO.parse(...).
This function parses a given search output file and returns a generator object
that yields one QueryResult object per iteration.
``parse`` takes two arguments: 1) a file handle or a filename of the input file
(the search output file) and 2) the format name.
>>> from Bio import SearchIO
>>> for qresult in SearchIO.parse('Blast/mirna.xml', 'blast-xml'):
... print("%s %s" % (qresult.id, qresult.description))
...
33211 mir_1
33212 mir_2
33213 mir_3
SearchIO also provides the Bio.SearchIO.read(...) function, which is intended
for use on search output files containing only one query. ``read`` returns one
QueryResult object and will raise an exception if the source file contains more
than one query:
>>> qresult = SearchIO.read('Blast/xml_2226_blastp_004.xml', 'blast-xml')
>>> print("%s %s" % (qresult.id, qresult.description))
...
gi|11464971:4-101 pleckstrin [Mus musculus]
>>> SearchIO.read('Blast/mirna.xml', 'blast-xml')
Traceback (most recent call last):
...
ValueError: ...
For accessing search results of large output files, you may use the indexing
functions Bio.SearchIO.index(...) or Bio.SearchIO.index_db(...). They have a
similar interface to their counterparts in SeqIO and AlignIO, with the addition
of optional, format-specific keyword arguments.
Output
======
SearchIO has write support for several formats, accessible from the
Bio.SearchIO.write(...) function. This function returns a tuple of four
numbers: the number of QueryResult, Hit, HSP, and HSPFragment written::
qresults = SearchIO.parse('Blast/mirna.xml', 'blast-xml')
SearchIO.write(qresults, 'results.tab', 'blast-tab')
<stdout> (3, 239, 277, 277)
Note that different writers may require different attribute values of the
SearchIO objects. This limits the scope of writable search results to search
results possessing the required attributes.
For example, the writer for HMMER domain table output requires
the conditional e-value attribute from each HSP object, among others. If you
try to write to the HMMER domain table format and your HSPs do not have this
attribute, an exception will be raised.
Conversion
==========
SearchIO provides a shortcut function Bio.SearchIO.convert(...) to convert a
given file into another format. Under the hood, ``convert`` simply parses a given
output file and writes it to another using the ``parse`` and ``write`` functions.
Note that the same restrictions found in Bio.SearchIO.write(...) apply to the
convert function as well.
Conventions
===========
The main goal of creating SearchIO is to have a common, easy to use interface
across different search output files. As such, we have also created some
conventions / standards for SearchIO that extend beyond the common object model.
These conventions apply to all files parsed by SearchIO, regardless of their
individual formats.
Python-style sequence coordinates
---------------------------------
When storing sequence coordinates (start and end values), SearchIO uses
the Python-style slice convention: zero-based and half-open intervals. For
example, if in a BLAST XML output file the start and end coordinates of an
HSP are 10 and 28, they would become 9 and 28 in SearchIO. The start
coordinate becomes 9 because Python indices start from zero, while the end
coordinate remains 28 as Python slices omit the last item in an interval.
Beside giving you the benefits of standardization, this convention also
makes the coordinates usable for slicing sequences. For example, given a
full query sequence and the start and end coordinates of an HSP, one can
use the coordinates to extract part of the query sequence that results in
the database hit.
When these objects are written to an output file using
SearchIO.write(...), the coordinate values are restored to their
respective format's convention. Using the example above, if the HSP would
be written to an XML file, the start and end coordinates would become 10
and 28 again.
Sequence coordinate order
-------------------------
Some search output formats reverse the start and end coordinate sequences
according to the sequence's strand. For example, in BLAST plain text
format if the matching strand lies in the minus orientation, then the
start coordinate will always be bigger than the end coordinate.
In SearchIO, start coordinates are always smaller than the end
coordinates, regardless of their originating strand. This ensures
consistency when using the coordinates to slice full sequences.
Note that this coordinate order convention is only enforced in the
HSPFragment level. If an HSP object has several HSPFragment objects, each
individual fragment will conform to this convention. But the order of the
fragments within the HSP object follows what the search output file uses.
Similar to the coordinate style convention, the start and end coordinates'
order are restored to their respective formats when the objects are
written using Bio.SearchIO.write(...).
Frames and strand values
------------------------
SearchIO only allows -1, 0, 1 and None as strand values. For frames, the
only allowed values are integers from -3 to 3 (inclusive) and None. Both
of these are standard Biopython conventions.
Supported Formats
=================
Below is a list of search program output formats supported by SearchIO.
Support for parsing, indexing, and writing:
- blast-tab - BLAST+ tabular output. Both variants without comments
(-m 6 flag) and with comments (-m 7 flag) are supported.
- blast-xml - BLAST+ XML output.
- blat-psl - The default output of BLAT (PSL format). Variants with or
without header are both supported. PSLX (PSL + sequences)
is also supported.
- hmmer3-tab - HMMER3 table output.
- hmmer3-domtab - HMMER3 domain table output. When using this format, the
program name has to be specified. For example, for parsing
hmmscan output, the name would be 'hmmscan-domtab'.
Support for parsing and indexing:
- exonerate-text - Exonerate plain text output.
- exonerate-vulgar - Exonerate vulgar line.
- exonerate-cigar - Exonerate cigar line.
- fasta-m10 - Bill Pearson's FASTA -m 10 output.
- hmmer3-text - HMMER3 regular text output format. Supported HMMER3
subprograms are hmmscan, hmmsearch, and phmmer.
- hmmer2-text - HMMER2 regular text output format. Supported HMMER2
subprograms are hmmpfam, hmmsearch.
Support for parsing:
- blast-text - BLAST+ plain text output.
- hhsuite2-text - HHSUITE plain text output.
Each of these formats have different keyword arguments available for use with
the main SearchIO functions. More details and examples are available in each
of the format's documentation.
"""
from Bio.File import as_handle
from Bio.SearchIO._model import QueryResult, Hit, HSP, HSPFragment
from Bio.SearchIO._utils import get_processor
__all__ = ("read", "parse", "to_dict", "index", "index_db", "write", "convert")
# dictionary of supported formats for parse() and read()
_ITERATOR_MAP = {
"blast-tab": ("BlastIO", "BlastTabParser"),
"blast-text": ("BlastIO", "BlastTextParser"),
"blast-xml": ("BlastIO", "BlastXmlParser"),
"blat-psl": ("BlatIO", "BlatPslParser"),
"exonerate-cigar": ("ExonerateIO", "ExonerateCigarParser"),
"exonerate-text": ("ExonerateIO", "ExonerateTextParser"),
"exonerate-vulgar": ("ExonerateIO", "ExonerateVulgarParser"),
"fasta-m10": ("FastaIO", "FastaM10Parser"),
"hhsuite2-text": ("HHsuiteIO", "Hhsuite2TextParser"),
"hhsuite3-text": ("HHsuiteIO", "Hhsuite2TextParser"),
"hmmer2-text": ("HmmerIO", "Hmmer2TextParser"),
"hmmer3-text": ("HmmerIO", "Hmmer3TextParser"),
"hmmer3-tab": ("HmmerIO", "Hmmer3TabParser"),
# for hmmer3-domtab, the specific program is part of the format name
# as we need it distinguish hit / target coordinates
"hmmscan3-domtab": ("HmmerIO", "Hmmer3DomtabHmmhitParser"),
"hmmsearch3-domtab": ("HmmerIO", "Hmmer3DomtabHmmqueryParser"),
"interproscan-xml": ("InterproscanIO", "InterproscanXmlParser"),
"phmmer3-domtab": ("HmmerIO", "Hmmer3DomtabHmmqueryParser"),
}
# dictionary of supported formats for index()
_INDEXER_MAP = {
"blast-tab": ("BlastIO", "BlastTabIndexer"),
"blast-xml": ("BlastIO", "BlastXmlIndexer"),
"blat-psl": ("BlatIO", "BlatPslIndexer"),
"exonerate-cigar": ("ExonerateIO", "ExonerateCigarIndexer"),
"exonerate-text": ("ExonerateIO", "ExonerateTextIndexer"),
"exonerate-vulgar": ("ExonerateIO", "ExonerateVulgarIndexer"),
"fasta-m10": ("FastaIO", "FastaM10Indexer"),
"hmmer2-text": ("HmmerIO", "Hmmer2TextIndexer"),
"hmmer3-text": ("HmmerIO", "Hmmer3TextIndexer"),
"hmmer3-tab": ("HmmerIO", "Hmmer3TabIndexer"),
"hmmscan3-domtab": ("HmmerIO", "Hmmer3DomtabHmmhitIndexer"),
"hmmsearch3-domtab": ("HmmerIO", "Hmmer3DomtabHmmqueryIndexer"),
"phmmer3-domtab": ("HmmerIO", "Hmmer3DomtabHmmqueryIndexer"),
}
# dictionary of supported formats for write()
_WRITER_MAP = {
"blast-tab": ("BlastIO", "BlastTabWriter"),
"blast-xml": ("BlastIO", "BlastXmlWriter"),
"blat-psl": ("BlatIO", "BlatPslWriter"),
"hmmer3-tab": ("HmmerIO", "Hmmer3TabWriter"),
"hmmscan3-domtab": ("HmmerIO", "Hmmer3DomtabHmmhitWriter"),
"hmmsearch3-domtab": ("HmmerIO", "Hmmer3DomtabHmmqueryWriter"),
"phmmer3-domtab": ("HmmerIO", "Hmmer3DomtabHmmqueryWriter"),
}
def parse(handle, format=None, **kwargs):
"""Iterate over search tool output file as QueryResult objects.
Arguments:
- handle - Handle to the file, or the filename as a string.
- format - Lower case string denoting one of the supported formats.
- kwargs - Format-specific keyword arguments.
This function is used to iterate over each query in a given search output
file:
>>> from Bio import SearchIO
>>> qresults = SearchIO.parse('Blast/mirna.xml', 'blast-xml')
>>> qresults
<generator object ...>
>>> for qresult in qresults:
... print("Search %s has %i hits" % (qresult.id, len(qresult)))
...
Search 33211 has 100 hits
Search 33212 has 44 hits
Search 33213 has 95 hits
Depending on the file format, ``parse`` may also accept additional keyword
argument(s) that modifies the behavior of the format parser. Here is a
simple example, where the keyword argument enables parsing of a commented
BLAST tabular output file:
>>> from Bio import SearchIO
>>> for qresult in SearchIO.parse('Blast/mirna.tab', 'blast-tab', comments=True):
... print("Search %s has %i hits" % (qresult.id, len(qresult)))
...
Search 33211 has 100 hits
Search 33212 has 44 hits
Search 33213 has 95 hits
"""
# get the iterator object and do error checking
iterator = get_processor(format, _ITERATOR_MAP)
# HACK: force BLAST XML decoding to use utf-8
handle_kwargs = {}
if format == "blast-xml":
handle_kwargs["encoding"] = "utf-8"
# and start iterating
with as_handle(handle, **handle_kwargs) as source_file:
generator = iterator(source_file, **kwargs)
yield from generator
def read(handle, format=None, **kwargs):
"""Turn a search output file containing one query into a single QueryResult.
- handle - Handle to the file, or the filename as a string.
- format - Lower case string denoting one of the supported formats.
- kwargs - Format-specific keyword arguments.
``read`` is used for parsing search output files containing exactly one query:
>>> from Bio import SearchIO
>>> qresult = SearchIO.read('Blast/xml_2226_blastp_004.xml', 'blast-xml')
>>> print("%s %s" % (qresult.id, qresult.description))
...
gi|11464971:4-101 pleckstrin [Mus musculus]
If the given handle has no results, an exception will be raised:
>>> from Bio import SearchIO
>>> qresult = SearchIO.read('Blast/tab_2226_tblastn_002.txt', 'blast-tab')
Traceback (most recent call last):
...
ValueError: No query results found in handle
Similarly, if the given handle has more than one result, an exception will
be raised:
>>> from Bio import SearchIO
>>> qresult = SearchIO.read('Blast/tab_2226_tblastn_001.txt', 'blast-tab')
Traceback (most recent call last):
...
ValueError: More than one query result found in handle
Like ``parse``, ``read`` may also accept keyword argument(s) depending on the
search output file format.
"""
query_results = parse(handle, format, **kwargs)
try:
query_result = next(query_results)
except StopIteration:
raise ValueError("No query results found in handle") from None
try:
next(query_results)
raise ValueError("More than one query result found in handle")
except StopIteration:
pass
return query_result
def to_dict(qresults, key_function=None):
"""Turn a QueryResult iterator or list into a dictionary.
- qresults - Iterable returning QueryResult objects.
- key_function - Optional callback function which when given a
QueryResult object should return a unique key for the
dictionary. Defaults to using .id of the result.
This function enables access of QueryResult objects from a single search
output file using its identifier.
>>> from Bio import SearchIO
>>> qresults = SearchIO.parse('Blast/wnts.xml', 'blast-xml')
>>> search_dict = SearchIO.to_dict(qresults)
>>> list(search_dict)
['gi|195230749:301-1383', 'gi|325053704:108-1166', ..., 'gi|53729353:216-1313']
>>> search_dict['gi|156630997:105-1160']
QueryResult(id='gi|156630997:105-1160', 5 hits)
By default, the dictionary key is the QueryResult's string ID. This may be
changed by supplying a callback function that returns the desired identifier.
Here is an example using a function that removes the 'gi|' part in the
beginning of the QueryResult ID.
>>> from Bio import SearchIO
>>> qresults = SearchIO.parse('Blast/wnts.xml', 'blast-xml')
>>> key_func = lambda qresult: qresult.id.split('|')[1]
>>> search_dict = SearchIO.to_dict(qresults, key_func)
>>> list(search_dict)
['195230749:301-1383', '325053704:108-1166', ..., '53729353:216-1313']
>>> search_dict['156630997:105-1160']
QueryResult(id='gi|156630997:105-1160', 5 hits)
Note that the callback function does not change the QueryResult's ID value.
It only changes the key value used to retrieve the associated QueryResult.
As this function loads all QueryResult objects into memory, it may be
unsuitable for dealing with files containing many queries. In that case, it
is recommended that you use either ``index`` or ``index_db``.
Since Python 3.7, the default dict class maintains key order, meaning
this dictionary will reflect the order of records given to it. For
CPython and PyPy, this was already implemented for Python 3.6, so
effectively you can always assume the record order is preserved.
"""
def _default_key_function(rec):
return rec.id
if key_function is None:
key_function = _default_key_function
qdict = {}
for qresult in qresults:
key = key_function(qresult)
if key in qdict:
raise ValueError("Duplicate key %r" % key)
qdict[key] = qresult
return qdict
def index(filename, format=None, key_function=None, **kwargs):
"""Indexes a search output file and returns a dictionary-like object.
- filename - string giving name of file to be indexed
- format - Lower case string denoting one of the supported formats.
- key_function - Optional callback function which when given a
QueryResult should return a unique key for the dictionary.
- kwargs - Format-specific keyword arguments.
Index returns a pseudo-dictionary object with QueryResult objects as its
values and a string identifier as its keys. The function is mainly useful
for dealing with large search output files, as it enables access to any
given QueryResult object much faster than using parse or read.
Index works by storing in-memory the start locations of all queries in a
file. When a user requests access to the query, this function will jump
to its start position, parse the whole query, and return it as a
QueryResult object:
>>> from Bio import SearchIO
>>> search_idx = SearchIO.index('Blast/wnts.xml', 'blast-xml')
>>> search_idx
SearchIO.index('Blast/wnts.xml', 'blast-xml', key_function=None)
>>> sorted(search_idx)
['gi|156630997:105-1160', 'gi|195230749:301-1383', ..., 'gi|53729353:216-1313']
>>> search_idx['gi|195230749:301-1383']
QueryResult(id='gi|195230749:301-1383', 5 hits)
>>> search_idx.close()
If the file is BGZF compressed, this is detected automatically. Ordinary
GZIP files are not supported:
>>> from Bio import SearchIO
>>> search_idx = SearchIO.index('Blast/wnts.xml.bgz', 'blast-xml')
>>> search_idx
SearchIO.index('Blast/wnts.xml.bgz', 'blast-xml', key_function=None)
>>> search_idx['gi|195230749:301-1383']
QueryResult(id='gi|195230749:301-1383', 5 hits)
>>> search_idx.close()
You can supply a custom callback function to alter the default identifier
string. This function should accept as its input the QueryResult ID string
and return a modified version of it.
>>> from Bio import SearchIO
>>> key_func = lambda id: id.split('|')[1]
>>> search_idx = SearchIO.index('Blast/wnts.xml', 'blast-xml', key_func)
>>> search_idx
SearchIO.index('Blast/wnts.xml', 'blast-xml', key_function=<function <lambda> at ...>)
>>> sorted(search_idx)
['156630997:105-1160', ..., '371502086:108-1205', '53729353:216-1313']
>>> search_idx['156630997:105-1160']
QueryResult(id='gi|156630997:105-1160', 5 hits)
>>> search_idx.close()
Note that the callback function does not change the QueryResult's ID value.
It only changes the key value used to retrieve the associated QueryResult.
"""
if not isinstance(filename, str):
raise TypeError("Need a filename (not a handle)")
from Bio.File import _IndexedSeqFileDict
proxy_class = get_processor(format, _INDEXER_MAP)
repr = f"SearchIO.index({filename!r}, {format!r}, key_function={key_function!r})"
return _IndexedSeqFileDict(
proxy_class(filename, **kwargs), key_function, repr, "QueryResult"
)
def index_db(index_filename, filenames=None, format=None, key_function=None, **kwargs):
"""Indexes several search output files into an SQLite database.
- index_filename - The SQLite filename.
- filenames - List of strings specifying file(s) to be indexed, or when
indexing a single file this can be given as a string.
(optional if reloading an existing index, but must match)
- format - Lower case string denoting one of the supported formats.
(optional if reloading an existing index, but must match)
- key_function - Optional callback function which when given a
QueryResult identifier string should return a unique
key for the dictionary.
- kwargs - Format-specific keyword arguments.
The ``index_db`` function is similar to ``index`` in that it indexes the start
position of all queries from search output files. The main difference is
instead of storing these indices in-memory, they are written to disk as an
SQLite database file. This allows the indices to persist between Python
sessions. This enables access to any queries in the file without any
indexing overhead, provided it has been indexed at least once.
>>> from Bio import SearchIO
>>> idx_filename = ":memory:" # Use a real filename, this is in RAM only!
>>> db_idx = SearchIO.index_db(idx_filename, 'Blast/mirna.xml', 'blast-xml')
>>> sorted(db_idx)
['33211', '33212', '33213']
>>> db_idx['33212']
QueryResult(id='33212', 44 hits)
>>> db_idx.close()
``index_db`` can also index multiple files and store them in the same
database, making it easier to group multiple search files and access them
from a single interface.
>>> from Bio import SearchIO
>>> idx_filename = ":memory:" # Use a real filename, this is in RAM only!
>>> files = ['Blast/mirna.xml', 'Blast/wnts.xml']
>>> db_idx = SearchIO.index_db(idx_filename, files, 'blast-xml')
>>> sorted(db_idx)
['33211', '33212', '33213', 'gi|156630997:105-1160', ..., 'gi|53729353:216-1313']
>>> db_idx['33212']
QueryResult(id='33212', 44 hits)
>>> db_idx.close()
One common example where this is helpful is if you had a large set of
query sequences (say ten thousand) which you split into ten query files
of one thousand sequences each in order to run as ten separate BLAST jobs
on a cluster. You could use ``index_db`` to index the ten BLAST output
files together for seamless access to all the results as one dictionary.
Note that ':memory:' rather than an index filename tells SQLite to hold
the index database in memory. This is useful for quick tests, but using
the Bio.SearchIO.index(...) function instead would use less memory.
BGZF compressed files are supported, and detected automatically. Ordinary
GZIP compressed files are not supported.
See also Bio.SearchIO.index(), Bio.SearchIO.to_dict(), and the Python module
glob which is useful for building lists of files.
"""
# cast filenames to list if it's a string
# (can we check if it's a string or a generator?)
if isinstance(filenames, str):
filenames = [filenames]
from Bio.File import _SQLiteManySeqFilesDict
repr = f"SearchIO.index_db({index_filename!r}, filenames={filenames!r}, {format!r}, key_function={key_function!r})"
def proxy_factory(format, filename=None):
"""Given a filename returns proxy object, else boolean if format OK."""
if filename:
return get_processor(format, _INDEXER_MAP)(filename, **kwargs)
else:
return format in _INDEXER_MAP
return _SQLiteManySeqFilesDict(
index_filename, filenames, proxy_factory, format, key_function, repr
)
def write(qresults, handle, format=None, **kwargs):
"""Write QueryResult objects to a file in the given format.
- qresults - An iterator returning QueryResult objects or a single
QueryResult object.
- handle - Handle to the file, or the filename as a string.
- format - Lower case string denoting one of the supported formats.
- kwargs - Format-specific keyword arguments.
The ``write`` function writes QueryResult object(s) into the given output
handle / filename. You can supply it with a single QueryResult object or an
iterable returning one or more QueryResult objects. In both cases, the
function will return a tuple of four values: the number of QueryResult, Hit,
HSP, and HSPFragment objects it writes to the output file::
from Bio import SearchIO
qresults = SearchIO.parse('Blast/mirna.xml', 'blast-xml')
SearchIO.write(qresults, 'results.tab', 'blast-tab')
<stdout> (3, 239, 277, 277)
The output of different formats may be adjusted using the format-specific
keyword arguments. Here is an example that writes BLAT PSL output file with
a header::
from Bio import SearchIO
qresults = SearchIO.parse('Blat/psl_34_001.psl', 'blat-psl')
SearchIO.write(qresults, 'results.tab', 'blat-psl', header=True)
<stdout> (2, 13, 22, 26)
"""
# turn qresults into an iterator if it's a single QueryResult object
if isinstance(qresults, QueryResult):
qresults = iter([qresults])
else:
qresults = iter(qresults)
# get the writer object and do error checking
writer_class = get_processor(format, _WRITER_MAP)
# write to the handle
with as_handle(handle, "w") as target_file:
writer = writer_class(target_file, **kwargs)
# count how many qresults, hits, and hsps
qresult_count, hit_count, hsp_count, frag_count = writer.write_file(qresults)
return qresult_count, hit_count, hsp_count, frag_count
def convert(in_file, in_format, out_file, out_format, in_kwargs=None, out_kwargs=None):
"""Convert between two search output formats, return number of records.
- in_file - Handle to the input file, or the filename as string.
- in_format - Lower case string denoting the format of the input file.
- out_file - Handle to the output file, or the filename as string.
- out_format - Lower case string denoting the format of the output file.
- in_kwargs - Dictionary of keyword arguments for the input function.
- out_kwargs - Dictionary of keyword arguments for the output function.
The convert function is a shortcut function for ``parse`` and ``write``. It has
the same return type as ``write``. Format-specific arguments may be passed to
the convert function, but only as dictionaries.
Here is an example of using ``convert`` to convert from a BLAST+ XML file
into a tabular file with comments::
from Bio import SearchIO
in_file = 'Blast/mirna.xml'
in_fmt = 'blast-xml'
out_file = 'results.tab'
out_fmt = 'blast-tab'
out_kwarg = {'comments': True}
SearchIO.convert(in_file, in_fmt, out_file, out_fmt, out_kwargs=out_kwarg)
<stdout> (3, 239, 277, 277)
Given that different search output file provide different statistics and
different level of details, the convert function is limited only to
converting formats that have the same statistics and for conversion to
formats with the same level of detail, or less.
For example, converting from a BLAST+ XML output to a HMMER table file
is not possible, as these are two search programs with different kinds of
statistics. In theory, you may provide the necessary values required by the
HMMER table file (e.g. conditional e-values, envelope coordinates, etc).
However, these values are likely to hold little meaning as they are not true
HMMER-computed values.
Another example is converting from BLAST+ XML to BLAST+ tabular file. This
is possible, as BLAST+ XML provide all the values necessary to create a
BLAST+ tabular file. However, the reverse conversion may not be possible.
There are more details covered in the XML file that are not found in a
tabular file (e.g. the lambda and kappa values)
"""
if in_kwargs is None:
in_kwargs = {}
if out_kwargs is None:
out_kwargs = {}
qresults = parse(in_file, in_format, **in_kwargs)
return write(qresults, out_file, out_format, **out_kwargs)
# if not used as a module, run the doctest
if __name__ == "__main__":
from Bio._utils import run_doctest
run_doctest()
|