File size: 118,856 Bytes
b7731cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
# Copyright 2000 Andrew Dalke.
# Copyright 2000-2002 Brad Chapman.
# Copyright 2004-2005, 2010 by M de Hoon.
# Copyright 2007-2020 by Peter Cock.
# All rights reserved.
#
# This file is part of the Biopython distribution and governed by your
# choice of the "Biopython License Agreement" or the "BSD 3-Clause License".
# Please see the LICENSE file that should have been included as part of this
# package.
"""Provide objects to represent biological sequences.

See also the Seq_ wiki and the chapter in our tutorial:
 - `HTML Tutorial`_
 - `PDF Tutorial`_

.. _Seq: http://biopython.org/wiki/Seq
.. _`HTML Tutorial`: http://biopython.org/DIST/docs/tutorial/Tutorial.html
.. _`PDF Tutorial`: http://biopython.org/DIST/docs/tutorial/Tutorial.pdf

"""
import array
import numbers
import warnings

from abc import ABC
from abc import abstractmethod

from Bio import BiopythonDeprecationWarning
from Bio import BiopythonWarning
from Bio.Data import CodonTable
from Bio.Data import IUPACData


def _maketrans(complement_mapping):
    """Make a python string translation table (PRIVATE).

    Arguments:
     - complement_mapping - a dictionary such as ambiguous_dna_complement
       and ambiguous_rna_complement from Data.IUPACData.

    Returns a translation table (a bytes object of length 256) for use with
    the python string's translate method to use in a (reverse) complement.

    Compatible with lower case and upper case sequences.

    For internal use only.
    """
    keys = "".join(complement_mapping.keys()).encode("ASCII")
    values = "".join(complement_mapping.values()).encode("ASCII")
    return bytes.maketrans(keys + keys.lower(), values + values.lower())


ambiguous_dna_complement = dict(IUPACData.ambiguous_dna_complement)
ambiguous_dna_complement["U"] = ambiguous_dna_complement["T"]
_dna_complement_table = _maketrans(ambiguous_dna_complement)
del ambiguous_dna_complement
ambiguous_rna_complement = dict(IUPACData.ambiguous_rna_complement)
ambiguous_rna_complement["T"] = ambiguous_rna_complement["U"]
_rna_complement_table = _maketrans(ambiguous_rna_complement)
del ambiguous_rna_complement


class SequenceDataAbstractBaseClass(ABC):
    """Abstract base class for sequence content providers.

    Most users will not need to use this class. It is used internally as a base
    class for sequence content provider classes such as _UndefinedSequenceData
    defined in this module, and _TwoBitSequenceData in Bio.SeqIO.TwoBitIO.
    Instances of these classes can be used instead of a ``bytes`` object as the
    data argument when creating a Seq object, and provide the sequence content
    only when requested via ``__getitem__``. This allows lazy parsers to load
    and parse sequence data from a file only for the requested sequence regions,
    and _UndefinedSequenceData instances to raise an exception when undefined
    sequence data are requested.

    Future implementations of lazy parsers that similarly provide on-demand
    parsing of sequence data should use a subclass of this abstract class and
    implement the abstract methods ``__len__`` and ``__getitem__``:

    * ``__len__`` must return the sequence length;
    * ``__getitem__`` must return

      * a ``bytes`` object for the requested region; or
      * a new instance of the subclass for the requested region; or
      * raise an ``UndefinedSequenceError``.

      Calling ``__getitem__`` for a sequence region of size zero should always
      return an empty ``bytes`` object.
      Calling ``__getitem__`` for the full sequence (as in data[:]) should
      either return a ``bytes`` object with the full sequence, or raise an
      ``UndefinedSequenceError``.

    Subclasses of SequenceDataAbstractBaseClass must call ``super().__init__()``
    as part of their ``__init__`` method.
    """

    __slots__ = ()

    def __init__(self):
        """Check if ``__getitem__`` returns a bytes-like object."""
        assert self[:0] == b""

    @abstractmethod
    def __len__(self):
        pass

    @abstractmethod
    def __getitem__(self, key):
        pass

    def __bytes__(self):
        return self[:]

    def __hash__(self):
        return hash(bytes(self))

    def __eq__(self, other):
        return bytes(self) == other

    def __lt__(self, other):
        return bytes(self) < other

    def __le__(self, other):
        return bytes(self) <= other

    def __gt__(self, other):
        return bytes(self) > other

    def __ge__(self, other):
        return bytes(self) >= other

    def __add__(self, other):
        try:
            return bytes(self) + bytes(other)
        except UndefinedSequenceError:
            return NotImplemented
            # will be handled by _UndefinedSequenceData.__radd__ or
            # by _PartiallyDefinedSequenceData.__radd__

    def __radd__(self, other):
        return other + bytes(self)

    def __mul__(self, other):
        return other * bytes(self)

    def __contains__(self, item):
        return bytes(self).__contains__(item)

    def decode(self, encoding="utf-8"):
        """Decode the data as bytes using the codec registered for encoding.

        encoding
          The encoding with which to decode the bytes.
        """
        return bytes(self).decode(encoding)

    def count(self, sub, start=None, end=None):
        """Return the number of non-overlapping occurrences of sub in data[start:end].

        Optional arguments start and end are interpreted as in slice notation.
        This method behaves as the count method of Python strings.
        """
        return bytes(self).count(sub, start, end)

    def find(self, sub, start=None, end=None):
        """Return the lowest index in data where subsection sub is found.

        Return the lowest index in data where subsection sub is found,
        such that sub is contained within data[start,end].  Optional
        arguments start and end are interpreted as in slice notation.

        Return -1 on failure.
        """
        return bytes(self).find(sub, start, end)

    def rfind(self, sub, start=None, end=None):
        """Return the highest index in data where subsection sub is found.

        Return the highest index in data where subsection sub is found,
        such that sub is contained within data[start,end].  Optional
        arguments start and end are interpreted as in slice notation.

        Return -1 on failure.
        """
        return bytes(self).rfind(sub, start, end)

    def index(self, sub, start=None, end=None):
        """Return the lowest index in data where subsection sub is found.

        Return the lowest index in data where subsection sub is found,
        such that sub is contained within data[start,end].  Optional
        arguments start and end are interpreted as in slice notation.

        Raises ValueError when the subsection is not found.
        """
        return bytes(self).index(sub, start, end)

    def rindex(self, sub, start=None, end=None):
        """Return the highest index in data where subsection sub is found.

        Return the highest index in data where subsection sub is found,
        such that sub is contained within data[start,end].  Optional
        arguments start and end are interpreted as in slice notation.

        Raise ValueError when the subsection is not found.
        """
        return bytes(self).rindex(sub, start, end)

    def startswith(self, prefix, start=None, end=None):
        """Return True if data starts with the specified prefix, False otherwise.

        With optional start, test data beginning at that position.
        With optional end, stop comparing data at that position.
        prefix can also be a tuple of bytes to try.
        """
        return bytes(self).startswith(prefix, start, end)

    def endswith(self, suffix, start=None, end=None):
        """Return True if data ends with the specified suffix, False otherwise.

        With optional start, test data beginning at that position.
        With optional end, stop comparing data at that position.
        suffix can also be a tuple of bytes to try.
        """
        return bytes(self).endswith(suffix, start, end)

    def split(self, sep=None, maxsplit=-1):
        """Return a list of the sections in the data, using sep as the delimiter.

        sep
          The delimiter according which to split the data.
          None (the default value) means split on ASCII whitespace characters
          (space, tab, return, newline, formfeed, vertical tab).
        maxsplit
          Maximum number of splits to do.
          -1 (the default value) means no limit.
        """
        return bytes(self).split(sep, maxsplit)

    def rsplit(self, sep=None, maxsplit=-1):
        """Return a list of the sections in the data, using sep as the delimiter.

        sep
          The delimiter according which to split the data.
          None (the default value) means split on ASCII whitespace characters
          (space, tab, return, newline, formfeed, vertical tab).
        maxsplit
          Maximum number of splits to do.
          -1 (the default value) means no limit.

        Splitting is done starting at the end of the data and working to the front.
        """
        return bytes(self).rsplit(sep, maxsplit)

    def strip(self, chars=None):
        """Strip leading and trailing characters contained in the argument.

        If the argument is omitted or None, strip leading and trailing ASCII whitespace.
        """
        return bytes(self).strip(chars)

    def lstrip(self, chars=None):
        """Strip leading characters contained in the argument.

        If the argument is omitted or None, strip leading ASCII whitespace.
        """
        return bytes(self).lstrip(chars)

    def rstrip(self, chars=None):
        """Strip trailing characters contained in the argument.

        If the argument is omitted or None, strip trailing ASCII whitespace.
        """
        return bytes(self).rstrip(chars)

    def upper(self):
        """Return a copy of data with all ASCII characters converted to uppercase."""
        return bytes(self).upper()

    def lower(self):
        """Return a copy of data with all ASCII characters converted to lowercase."""
        return bytes(self).lower()

    def isupper(self):
        """Return True if all ASCII characters in data are uppercase.

        If there are no cased characters, the method returns False.
        """
        return bytes(self).isupper()

    def islower(self):
        """Return True if all ASCII characters in data are lowercase.

        If there are no cased characters, the method returns False.
        """
        return bytes(self).islower()

    def replace(self, old, new):
        """Return a copy with all occurrences of substring old replaced by new."""
        return bytes(self).replace(old, new)

    def translate(self, table, delete=b""):
        """Return a copy with each character mapped by the given translation table.

          table
            Translation table, which must be a bytes object of length 256.

        All characters occurring in the optional argument delete are removed.
        The remaining characters are mapped through the given translation table.
        """
        return bytes(self).translate(table, delete)

    @property
    def defined(self):
        """Return True if the sequence is defined, False if undefined or partially defined.

        Zero-length sequences are always considered to be defined.
        """
        return True

    @property
    def defined_ranges(self):
        """Return a tuple of the ranges where the sequence contents is defined.

        The return value has the format ((start1, end1), (start2, end2), ...).
        """
        length = len(self)
        if length > 0:
            return ((0, length),)
        else:
            return ()


class _SeqAbstractBaseClass(ABC):
    """Abstract base class for the Seq and MutableSeq classes (PRIVATE).

    Most users will not need to use this class. It is used internally as an
    abstract base class for Seq and MutableSeq, as most of their methods are
    identical.
    """

    __slots__ = ("_data",)
    __array_ufunc__ = None  # turn off numpy Ufuncs

    @abstractmethod
    def __init__(self):
        pass

    def __bytes__(self):
        return bytes(self._data)

    def __repr__(self):
        """Return (truncated) representation of the sequence."""
        data = self._data
        if isinstance(data, _UndefinedSequenceData):
            return f"Seq(None, length={len(self)})"
        if isinstance(data, _PartiallyDefinedSequenceData):
            d = {}
            for position, seq in data._data.items():
                if len(seq) > 60:
                    start = seq[:54].decode("ASCII")
                    end = seq[-3:].decode("ASCII")
                    seq = f"{start}...{end}"
                else:
                    seq = seq.decode("ASCII")
                d[position] = seq
            return "Seq(%r, length=%d)" % (d, len(self))
        if len(data) > 60:
            # Shows the last three letters as it is often useful to see if
            # there is a stop codon at the end of a sequence.
            # Note total length is 54+3+3=60
            start = data[:54].decode("ASCII")
            end = data[-3:].decode("ASCII")
            return f"{self.__class__.__name__}('{start}...{end}')"
        else:
            data = data.decode("ASCII")
            return f"{self.__class__.__name__}('{data}')"

    def __str__(self):
        """Return the full sequence as a python string."""
        return self._data.decode("ASCII")

    def __eq__(self, other):
        """Compare the sequence to another sequence or a string.

        Sequences are equal to each other if their sequence contents is
        identical:

        >>> from Bio.Seq import Seq, MutableSeq
        >>> seq1 = Seq("ACGT")
        >>> seq2 = Seq("ACGT")
        >>> mutable_seq = MutableSeq("ACGT")
        >>> seq1 == seq2
        True
        >>> seq1 == mutable_seq
        True
        >>> seq1 == "ACGT"
        True

        Note that the sequence objects themselves are not identical to each
        other:

        >>> id(seq1) == id(seq2)
        False
        >>> seq1 is seq2
        False

        Sequences can also be compared to strings, ``bytes``, and ``bytearray``
        objects:

        >>> seq1 == "ACGT"
        True
        >>> seq1 == b"ACGT"
        True
        >>> seq1 == bytearray(b"ACGT")
        True
        """
        if isinstance(other, _SeqAbstractBaseClass):
            return self._data == other._data
        elif isinstance(other, str):
            return self._data == other.encode("ASCII")
        else:
            return self._data == other

    def __lt__(self, other):
        """Implement the less-than operand."""
        if isinstance(other, _SeqAbstractBaseClass):
            return self._data < other._data
        elif isinstance(other, str):
            return self._data < other.encode("ASCII")
        else:
            return self._data < other

    def __le__(self, other):
        """Implement the less-than or equal operand."""
        if isinstance(other, _SeqAbstractBaseClass):
            return self._data <= other._data
        elif isinstance(other, str):
            return self._data <= other.encode("ASCII")
        else:
            return self._data <= other

    def __gt__(self, other):
        """Implement the greater-than operand."""
        if isinstance(other, _SeqAbstractBaseClass):
            return self._data > other._data
        elif isinstance(other, str):
            return self._data > other.encode("ASCII")
        else:
            return self._data > other

    def __ge__(self, other):
        """Implement the greater-than or equal operand."""
        if isinstance(other, _SeqAbstractBaseClass):
            return self._data >= other._data
        elif isinstance(other, str):
            return self._data >= other.encode("ASCII")
        else:
            return self._data >= other

    def __len__(self):
        """Return the length of the sequence."""
        return len(self._data)

    def __iter__(self):
        """Return an iterable of the sequence."""
        return self._data.decode("ASCII").__iter__()

    def __getitem__(self, index):
        """Return a subsequence as a single letter or as a sequence object.

        If the index is an integer, a single letter is returned as a Python
        string:

        >>> seq = Seq('ACTCGACGTCG')
        >>> seq[5]
        'A'

        Otherwise, a new sequence object of the same class is returned:

        >>> seq[5:8]
        Seq('ACG')
        >>> mutable_seq = MutableSeq('ACTCGACGTCG')
        >>> mutable_seq[5:8]
        MutableSeq('ACG')
        """
        if isinstance(index, numbers.Integral):
            # Return a single letter as a string
            return chr(self._data[index])
        else:
            # Return the (sub)sequence as another Seq/MutableSeq object
            return self.__class__(self._data[index])

    def __add__(self, other):
        """Add a sequence or string to this sequence.

        >>> from Bio.Seq import Seq, MutableSeq
        >>> Seq("MELKI") + "LV"
        Seq('MELKILV')
        >>> MutableSeq("MELKI") + "LV"
        MutableSeq('MELKILV')
        """
        if isinstance(other, _SeqAbstractBaseClass):
            return self.__class__(self._data + other._data)
        elif isinstance(other, str):
            return self.__class__(self._data + other.encode("ASCII"))
        else:
            # If other is a SeqRecord, then SeqRecord's __radd__ will handle
            # this. If not, returning NotImplemented will trigger a TypeError.
            return NotImplemented

    def __radd__(self, other):
        """Add a sequence string on the left.

        >>> from Bio.Seq import Seq, MutableSeq
        >>> "LV" + Seq("MELKI")
        Seq('LVMELKI')
        >>> "LV" + MutableSeq("MELKI")
        MutableSeq('LVMELKI')

        Adding two sequence objects is handled via the __add__ method.
        """
        if isinstance(other, str):
            return self.__class__(other.encode("ASCII") + self._data)
        else:
            return NotImplemented

    def __mul__(self, other):
        """Multiply sequence by integer.

        >>> from Bio.Seq import Seq, MutableSeq
        >>> Seq('ATG') * 2
        Seq('ATGATG')
        >>> MutableSeq('ATG') * 2
        MutableSeq('ATGATG')
        """
        if not isinstance(other, numbers.Integral):
            raise TypeError(f"can't multiply {self.__class__.__name__} by non-int type")
        # we would like to simply write
        # data = self._data * other
        # here, but currently that causes a bug on PyPy if self._data is a
        # bytearray and other is a numpy integer. Using this workaround:
        data = self._data.__mul__(other)
        return self.__class__(data)

    def __rmul__(self, other):
        """Multiply integer by sequence.

        >>> from Bio.Seq import Seq
        >>> 2 * Seq('ATG')
        Seq('ATGATG')
        """
        if not isinstance(other, numbers.Integral):
            raise TypeError(f"can't multiply {self.__class__.__name__} by non-int type")
        # we would like to simply write
        # data = self._data * other
        # here, but currently that causes a bug on PyPy if self._data is a
        # bytearray and other is a numpy integer. Using this workaround:
        data = self._data.__mul__(other)
        return self.__class__(data)

    def __imul__(self, other):
        """Multiply the sequence object by other and assign.

        >>> from Bio.Seq import Seq
        >>> seq = Seq('ATG')
        >>> seq *= 2
        >>> seq
        Seq('ATGATG')

        Note that this is different from in-place multiplication. The ``seq``
        variable is reassigned to the multiplication result, but any variable
        pointing to ``seq`` will remain unchanged:

        >>> seq = Seq('ATG')
        >>> seq2 = seq
        >>> id(seq) == id(seq2)
        True
        >>> seq *= 2
        >>> seq
        Seq('ATGATG')
        >>> seq2
        Seq('ATG')
        >>> id(seq) == id(seq2)
        False
        """
        if not isinstance(other, numbers.Integral):
            raise TypeError(f"can't multiply {self.__class__.__name__} by non-int type")
        # we would like to simply write
        # data = self._data * other
        # here, but currently that causes a bug on PyPy if self._data is a
        # bytearray and other is a numpy integer. Using this workaround:
        data = self._data.__mul__(other)
        return self.__class__(data)

    def count(self, sub, start=None, end=None):
        """Return a non-overlapping count, like that of a python string.

        The number of occurrences of substring argument sub in the
        (sub)sequence given by [start:end] is returned as an integer.
        Optional arguments start and end are interpreted as in slice
        notation.

        Arguments:
         - sub - a string or another Seq object to look for
         - start - optional integer, slice start
         - end - optional integer, slice end

        e.g.

        >>> from Bio.Seq import Seq
        >>> my_seq = Seq("AAAATGA")
        >>> print(my_seq.count("A"))
        5
        >>> print(my_seq.count("ATG"))
        1
        >>> print(my_seq.count(Seq("AT")))
        1
        >>> print(my_seq.count("AT", 2, -1))
        1

        HOWEVER, please note because the ``count`` method of Seq and MutableSeq
        objects, like that of Python strings, do a non-overlapping search, this
        may not give the answer you expect:

        >>> "AAAA".count("AA")
        2
        >>> print(Seq("AAAA").count("AA"))
        2

        For an overlapping search, use the ``count_overlap`` method:

        >>> print(Seq("AAAA").count_overlap("AA"))
        3
        """
        if isinstance(sub, MutableSeq):
            sub = sub._data
        elif isinstance(sub, Seq):
            sub = bytes(sub)
        elif isinstance(sub, str):
            sub = sub.encode("ASCII")
        elif not isinstance(sub, (bytes, bytearray)):
            raise TypeError(
                "a Seq, MutableSeq, str, bytes, or bytearray object is required, not '%s'"
                % type(sub)
            )
        return self._data.count(sub, start, end)

    def count_overlap(self, sub, start=None, end=None):
        """Return an overlapping count.

        Returns an integer, the number of occurrences of substring
        argument sub in the (sub)sequence given by [start:end].
        Optional arguments start and end are interpreted as in slice
        notation.

        Arguments:
         - sub - a string or another Seq object to look for
         - start - optional integer, slice start
         - end - optional integer, slice end

        e.g.

        >>> from Bio.Seq import Seq
        >>> print(Seq("AAAA").count_overlap("AA"))
        3
        >>> print(Seq("ATATATATA").count_overlap("ATA"))
        4
        >>> print(Seq("ATATATATA").count_overlap("ATA", 3, -1))
        1

        For a non-overlapping search, use the ``count`` method:

        >>> print(Seq("AAAA").count("AA"))
        2

        Where substrings do not overlap, ``count_overlap`` behaves the same as
        the ``count`` method:

        >>> from Bio.Seq import Seq
        >>> my_seq = Seq("AAAATGA")
        >>> print(my_seq.count_overlap("A"))
        5
        >>> my_seq.count_overlap("A") == my_seq.count("A")
        True
        >>> print(my_seq.count_overlap("ATG"))
        1
        >>> my_seq.count_overlap("ATG") == my_seq.count("ATG")
        True
        >>> print(my_seq.count_overlap(Seq("AT")))
        1
        >>> my_seq.count_overlap(Seq("AT")) == my_seq.count(Seq("AT"))
        True
        >>> print(my_seq.count_overlap("AT", 2, -1))
        1
        >>> my_seq.count_overlap("AT", 2, -1) == my_seq.count("AT", 2, -1)
        True

        HOWEVER, do not use this method for such cases because the
        count() method is much for efficient.
        """
        if isinstance(sub, MutableSeq):
            sub = sub._data
        elif isinstance(sub, Seq):
            sub = bytes(sub)
        elif isinstance(sub, str):
            sub = sub.encode("ASCII")
        elif not isinstance(sub, (bytes, bytearray)):
            raise TypeError(
                "a Seq, MutableSeq, str, bytes, or bytearray object is required, not '%s'"
                % type(sub)
            )
        data = self._data
        overlap_count = 0
        while True:
            start = data.find(sub, start, end) + 1
            if start != 0:
                overlap_count += 1
            else:
                return overlap_count

    def __contains__(self, item):
        """Return True if item is a subsequence of the sequence, and False otherwise.

        e.g.

        >>> from Bio.Seq import Seq, MutableSeq
        >>> my_dna = Seq("ATATGAAATTTGAAAA")
        >>> "AAA" in my_dna
        True
        >>> Seq("AAA") in my_dna
        True
        >>> MutableSeq("AAA") in my_dna
        True
        """
        if isinstance(item, _SeqAbstractBaseClass):
            item = bytes(item)
        elif isinstance(item, str):
            item = item.encode("ASCII")
        return item in self._data

    def find(self, sub, start=None, end=None):
        """Return the lowest index in the sequence where subsequence sub is found.

        With optional arguments start and end, return the lowest index in the
        sequence such that the subsequence sub is contained within the sequence
        region [start:end].

        Arguments:
         - sub - a string or another Seq or MutableSeq object to search for
         - start - optional integer, slice start
         - end - optional integer, slice end

        Returns -1 if the subsequence is NOT found.

        e.g. Locating the first typical start codon, AUG, in an RNA sequence:

        >>> from Bio.Seq import Seq
        >>> my_rna = Seq("GUCAUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAGUUG")
        >>> my_rna.find("AUG")
        3

        The next typical start codon can then be found by starting the search
        at position 4:

        >>> my_rna.find("AUG", 4)
        15
        """
        if isinstance(sub, _SeqAbstractBaseClass):
            sub = bytes(sub)
        elif isinstance(sub, str):
            sub = sub.encode("ASCII")
        elif not isinstance(sub, (bytes, bytearray)):
            raise TypeError(
                "a Seq, MutableSeq, str, bytes, or bytearray object is required, not '%s'"
                % type(sub)
            )
        return self._data.find(sub, start, end)

    def rfind(self, sub, start=None, end=None):
        """Return the highest index in the sequence where subsequence sub is found.

        With optional arguments start and end, return the highest index in the
        sequence such that the subsequence sub is contained within the sequence
        region [start:end].

        Arguments:
         - sub - a string or another Seq or MutableSeq object to search for
         - start - optional integer, slice start
         - end - optional integer, slice end

        Returns -1 if the subsequence is NOT found.

        e.g. Locating the last typical start codon, AUG, in an RNA sequence:

        >>> from Bio.Seq import Seq
        >>> my_rna = Seq("GUCAUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAGUUG")
        >>> my_rna.rfind("AUG")
        15

        The location of the typical start codon before that can be found by
        ending the search at position 15:

        >>> my_rna.rfind("AUG", end=15)
        3
        """
        if isinstance(sub, _SeqAbstractBaseClass):
            sub = bytes(sub)
        elif isinstance(sub, str):
            sub = sub.encode("ASCII")
        elif not isinstance(sub, (bytes, bytearray)):
            raise TypeError(
                "a Seq, MutableSeq, str, bytes, or bytearray object is required, not '%s'"
                % type(sub)
            )
        return self._data.rfind(sub, start, end)

    def index(self, sub, start=None, end=None):
        """Return the lowest index in the sequence where subsequence sub is found.

        With optional arguments start and end, return the lowest index in the
        sequence such that the subsequence sub is contained within the sequence
        region [start:end].

        Arguments:
         - sub - a string or another Seq or MutableSeq object to search for
         - start - optional integer, slice start
         - end - optional integer, slice end

        Raises a ValueError if the subsequence is NOT found.

        e.g. Locating the first typical start codon, AUG, in an RNA sequence:

        >>> from Bio.Seq import Seq
        >>> my_rna = Seq("GUCAUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAGUUG")
        >>> my_rna.index("AUG")
        3

        The next typical start codon can then be found by starting the search
        at position 4:

        >>> my_rna.index("AUG", 4)
        15

        This method performs the same search as the ``find`` method.  However,
        if the subsequence is not found, ``find`` returns -1 which ``index``
        raises a ValueError:

        >>> my_rna.index("T")
        Traceback (most recent call last):
                   ...
        ValueError: ...
        >>> my_rna.find("T")
        -1
        """
        if isinstance(sub, MutableSeq):
            sub = sub._data
        elif isinstance(sub, Seq):
            sub = bytes(sub)
        elif isinstance(sub, str):
            sub = sub.encode("ASCII")
        elif not isinstance(sub, (bytes, bytearray)):
            raise TypeError(
                "a Seq, MutableSeq, str, bytes, or bytearray object is required, not '%s'"
                % type(sub)
            )
        return self._data.index(sub, start, end)

    def rindex(self, sub, start=None, end=None):
        """Return the highest index in the sequence where subsequence sub is found.

        With optional arguments start and end, return the highest index in the
        sequence such that the subsequence sub is contained within the sequence
        region [start:end].

        Arguments:
         - sub - a string or another Seq or MutableSeq object to search for
         - start - optional integer, slice start
         - end - optional integer, slice end

        Returns -1 if the subsequence is NOT found.

        e.g. Locating the last typical start codon, AUG, in an RNA sequence:

        >>> from Bio.Seq import Seq
        >>> my_rna = Seq("GUCAUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAGUUG")
        >>> my_rna.rindex("AUG")
        15

        The location of the typical start codon before that can be found by
        ending the search at position 15:

        >>> my_rna.rindex("AUG", end=15)
        3

        This method performs the same search as the ``rfind`` method.  However,
        if the subsequence is not found, ``rfind`` returns -1 which ``rindex``
        raises a ValueError:

        >>> my_rna.rindex("T")
        Traceback (most recent call last):
                   ...
        ValueError: ...
        >>> my_rna.rfind("T")
        -1
        """
        if isinstance(sub, MutableSeq):
            sub = sub._data
        elif isinstance(sub, Seq):
            sub = bytes(sub)
        elif isinstance(sub, str):
            sub = sub.encode("ASCII")
        elif not isinstance(sub, (bytes, bytearray)):
            raise TypeError(
                "a Seq, MutableSeq, str, bytes, or bytearray object is required, not '%s'"
                % type(sub)
            )
        return self._data.rindex(sub, start, end)

    def startswith(self, prefix, start=None, end=None):
        """Return True if the sequence starts with the given prefix, False otherwise.

        Return True if the sequence starts with the specified prefix
        (a string or another Seq object), False otherwise.
        With optional start, test sequence beginning at that position.
        With optional end, stop comparing sequence at that position.
        prefix can also be a tuple of strings to try.  e.g.

        >>> from Bio.Seq import Seq
        >>> my_rna = Seq("GUCAUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAGUUG")
        >>> my_rna.startswith("GUC")
        True
        >>> my_rna.startswith("AUG")
        False
        >>> my_rna.startswith("AUG", 3)
        True
        >>> my_rna.startswith(("UCC", "UCA", "UCG"), 1)
        True
        """
        if isinstance(prefix, tuple):
            prefix = tuple(
                bytes(p) if isinstance(p, _SeqAbstractBaseClass) else p.encode("ASCII")
                for p in prefix
            )
        elif isinstance(prefix, _SeqAbstractBaseClass):
            prefix = bytes(prefix)
        elif isinstance(prefix, str):
            prefix = prefix.encode("ASCII")
        return self._data.startswith(prefix, start, end)

    def endswith(self, suffix, start=None, end=None):
        """Return True if the sequence ends with the given suffix, False otherwise.

        Return True if the sequence ends with the specified suffix
        (a string or another Seq object), False otherwise.
        With optional start, test sequence beginning at that position.
        With optional end, stop comparing sequence at that position.
        suffix can also be a tuple of strings to try.  e.g.

        >>> from Bio.Seq import Seq
        >>> my_rna = Seq("GUCAUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAGUUG")
        >>> my_rna.endswith("UUG")
        True
        >>> my_rna.endswith("AUG")
        False
        >>> my_rna.endswith("AUG", 0, 18)
        True
        >>> my_rna.endswith(("UCC", "UCA", "UUG"))
        True
        """
        if isinstance(suffix, tuple):
            suffix = tuple(
                bytes(p) if isinstance(p, _SeqAbstractBaseClass) else p.encode("ASCII")
                for p in suffix
            )
        elif isinstance(suffix, _SeqAbstractBaseClass):
            suffix = bytes(suffix)
        elif isinstance(suffix, str):
            suffix = suffix.encode("ASCII")
        return self._data.endswith(suffix, start, end)

    def split(self, sep=None, maxsplit=-1):
        """Return a list of subsequences when splitting the sequence by separator sep.

        Return a list of the subsequences in the sequence (as Seq objects),
        using sep as the delimiter string.  If maxsplit is given, at
        most maxsplit splits are done.  If maxsplit is omitted, all
        splits are made.

        For consistency with the ``split`` method of Python strings, any
        whitespace (tabs, spaces, newlines) is a separator if sep is None, the
        default value

        e.g.

        >>> from Bio.Seq import Seq
        >>> my_rna = Seq("GUCAUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAGUUG")
        >>> my_aa = my_rna.translate()
        >>> my_aa
        Seq('VMAIVMGR*KGAR*L')
        >>> for pep in my_aa.split("*"):
        ...     pep
        Seq('VMAIVMGR')
        Seq('KGAR')
        Seq('L')
        >>> for pep in my_aa.split("*", 1):
        ...     pep
        Seq('VMAIVMGR')
        Seq('KGAR*L')

        See also the rsplit method, which splits the sequence starting from the
        end:

        >>> for pep in my_aa.rsplit("*", 1):
        ...     pep
        Seq('VMAIVMGR*KGAR')
        Seq('L')
        """
        if isinstance(sep, _SeqAbstractBaseClass):
            sep = bytes(sep)
        elif isinstance(sep, str):
            sep = sep.encode("ASCII")
        return [Seq(part) for part in self._data.split(sep, maxsplit)]

    def rsplit(self, sep=None, maxsplit=-1):
        """Return a list of subsequences by splitting the sequence from the right.

        Return a list of the subsequences in the sequence (as Seq objects),
        using sep as the delimiter string.  If maxsplit is given, at
        most maxsplit splits are done.  If maxsplit is omitted, all
        splits are made.

        For consistency with the ``rsplit`` method of Python strings, any
        whitespace (tabs, spaces, newlines) is a separator if sep is None, the
        default value

        e.g.

        >>> from Bio.Seq import Seq
        >>> my_rna = Seq("GUCAUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAGUUG")
        >>> my_aa = my_rna.translate()
        >>> my_aa
        Seq('VMAIVMGR*KGAR*L')
        >>> for pep in my_aa.rsplit("*"):
        ...     pep
        Seq('VMAIVMGR')
        Seq('KGAR')
        Seq('L')
        >>> for pep in my_aa.rsplit("*", 1):
        ...     pep
        Seq('VMAIVMGR*KGAR')
        Seq('L')

        See also the split method, which splits the sequence starting from the
        beginning:

        >>> for pep in my_aa.split("*", 1):
        ...     pep
        Seq('VMAIVMGR')
        Seq('KGAR*L')
        """
        if isinstance(sep, _SeqAbstractBaseClass):
            sep = bytes(sep)
        elif isinstance(sep, str):
            sep = sep.encode("ASCII")
        return [Seq(part) for part in self._data.rsplit(sep, maxsplit)]

    def strip(self, chars=None, inplace=False):
        """Return a sequence object with leading and trailing ends stripped.

        With default arguments, leading and trailing whitespace is removed:

        >>> seq = Seq(" ACGT ")
        >>> seq.strip()
        Seq('ACGT')
        >>> seq
        Seq(' ACGT ')

        If ``chars`` is given and not ``None``, remove characters in ``chars``
        instead.  The order of the characters to be removed is not important:

        >>> Seq("ACGTACGT").strip("TGCA")
        Seq('')

        A copy of the sequence is returned if ``inplace`` is ``False`` (the
        default value).  If ``inplace`` is ``True``, the sequence is stripped
        in-place and returned.

        >>> seq = MutableSeq(" ACGT ")
        >>> seq.strip(inplace=False)
        MutableSeq('ACGT')
        >>> seq
        MutableSeq(' ACGT ')
        >>> seq.strip(inplace=True)
        MutableSeq('ACGT')
        >>> seq
        MutableSeq('ACGT')

        As ``Seq`` objects are immutable, a ``TypeError`` is raised if ``strip``
        is called on a ``Seq`` object with ``inplace=True``.

        See also the lstrip and rstrip methods.
        """
        if isinstance(chars, _SeqAbstractBaseClass):
            chars = bytes(chars)
        elif isinstance(chars, str):
            chars = chars.encode("ASCII")
        try:
            data = self._data.strip(chars)
        except TypeError:
            raise TypeError(
                "argument must be None or a string, Seq, MutableSeq, or bytes-like object"
            ) from None
        if inplace:
            if not isinstance(self._data, bytearray):
                raise TypeError("Sequence is immutable")
            self._data[:] = data
            return self
        else:
            return self.__class__(data)

    def lstrip(self, chars=None, inplace=False):
        """Return a sequence object with leading and trailing ends stripped.

        With default arguments, leading whitespace is removed:

        >>> seq = Seq(" ACGT ")
        >>> seq.lstrip()
        Seq('ACGT ')
        >>> seq
        Seq(' ACGT ')

        If ``chars`` is given and not ``None``, remove characters in ``chars``
        from the leading end instead.  The order of the characters to be removed
        is not important:

        >>> Seq("ACGACGTTACG").lstrip("GCA")
        Seq('TTACG')

        A copy of the sequence is returned if ``inplace`` is ``False`` (the
        default value).  If ``inplace`` is ``True``, the sequence is stripped
        in-place and returned.

        >>> seq = MutableSeq(" ACGT ")
        >>> seq.lstrip(inplace=False)
        MutableSeq('ACGT ')
        >>> seq
        MutableSeq(' ACGT ')
        >>> seq.lstrip(inplace=True)
        MutableSeq('ACGT ')
        >>> seq
        MutableSeq('ACGT ')

        As ``Seq`` objects are immutable, a ``TypeError`` is raised if
        ``lstrip`` is called on a ``Seq`` object with ``inplace=True``.

        See also the strip and rstrip methods.
        """
        if isinstance(chars, _SeqAbstractBaseClass):
            chars = bytes(chars)
        elif isinstance(chars, str):
            chars = chars.encode("ASCII")
        try:
            data = self._data.lstrip(chars)
        except TypeError:
            raise TypeError(
                "argument must be None or a string, Seq, MutableSeq, or bytes-like object"
            ) from None
        if inplace:
            if not isinstance(self._data, bytearray):
                raise TypeError("Sequence is immutable")
            self._data[:] = data
            return self
        else:
            return self.__class__(data)

    def rstrip(self, chars=None, inplace=False):
        """Return a sequence object with trailing ends stripped.

        With default arguments, trailing whitespace is removed:

        >>> seq = Seq(" ACGT ")
        >>> seq.rstrip()
        Seq(' ACGT')
        >>> seq
        Seq(' ACGT ')

        If ``chars`` is given and not ``None``, remove characters in ``chars``
        from the trailing end instead.  The order of the characters to be
        removed is not important:

        >>> Seq("ACGACGTTACG").rstrip("GCA")
        Seq('ACGACGTT')

        A copy of the sequence is returned if ``inplace`` is ``False`` (the
        default value).  If ``inplace`` is ``True``, the sequence is stripped
        in-place and returned.

        >>> seq = MutableSeq(" ACGT ")
        >>> seq.rstrip(inplace=False)
        MutableSeq(' ACGT')
        >>> seq
        MutableSeq(' ACGT ')
        >>> seq.rstrip(inplace=True)
        MutableSeq(' ACGT')
        >>> seq
        MutableSeq(' ACGT')

        As ``Seq`` objects are immutable, a ``TypeError`` is raised if
        ``rstrip`` is called on a ``Seq`` object with ``inplace=True``.

        See also the strip and lstrip methods.
        """
        if isinstance(chars, _SeqAbstractBaseClass):
            chars = bytes(chars)
        elif isinstance(chars, str):
            chars = chars.encode("ASCII")
        try:
            data = self._data.rstrip(chars)
        except TypeError:
            raise TypeError(
                "argument must be None or a string, Seq, MutableSeq, or bytes-like object"
            ) from None
        if inplace:
            if not isinstance(self._data, bytearray):
                raise TypeError("Sequence is immutable")
            self._data[:] = data
            return self
        else:
            return self.__class__(data)

    def upper(self, inplace=False):
        """Return the sequence in upper case.

        An upper-case copy of the sequence is returned if inplace is False,
        the default value:

        >>> from Bio.Seq import Seq, MutableSeq
        >>> my_seq = Seq("VHLTPeeK*")
        >>> my_seq
        Seq('VHLTPeeK*')
        >>> my_seq.lower()
        Seq('vhltpeek*')
        >>> my_seq.upper()
        Seq('VHLTPEEK*')
        >>> my_seq
        Seq('VHLTPeeK*')

        The sequence is modified in-place and returned if inplace is True:

        >>> my_seq = MutableSeq("VHLTPeeK*")
        >>> my_seq
        MutableSeq('VHLTPeeK*')
        >>> my_seq.lower()
        MutableSeq('vhltpeek*')
        >>> my_seq.upper()
        MutableSeq('VHLTPEEK*')
        >>> my_seq
        MutableSeq('VHLTPeeK*')

        >>> my_seq.lower(inplace=True)
        MutableSeq('vhltpeek*')
        >>> my_seq
        MutableSeq('vhltpeek*')
        >>> my_seq.upper(inplace=True)
        MutableSeq('VHLTPEEK*')
        >>> my_seq
        MutableSeq('VHLTPEEK*')

        As ``Seq`` objects are immutable, a ``TypeError`` is raised if
        ``upper`` is called on a ``Seq`` object with ``inplace=True``.

        See also the ``lower`` method.
        """
        data = self._data.upper()
        if inplace:
            if not isinstance(self._data, bytearray):
                raise TypeError("Sequence is immutable")
            self._data[:] = data
            return self
        else:
            return self.__class__(data)

    def lower(self, inplace=False):
        """Return the sequence in lower case.

        An lower-case copy of the sequence is returned if inplace is False,
        the default value:

        >>> from Bio.Seq import Seq, MutableSeq
        >>> my_seq = Seq("VHLTPeeK*")
        >>> my_seq
        Seq('VHLTPeeK*')
        >>> my_seq.lower()
        Seq('vhltpeek*')
        >>> my_seq.upper()
        Seq('VHLTPEEK*')
        >>> my_seq
        Seq('VHLTPeeK*')

        The sequence is modified in-place and returned if inplace is True:

        >>> my_seq = MutableSeq("VHLTPeeK*")
        >>> my_seq
        MutableSeq('VHLTPeeK*')
        >>> my_seq.lower()
        MutableSeq('vhltpeek*')
        >>> my_seq.upper()
        MutableSeq('VHLTPEEK*')
        >>> my_seq
        MutableSeq('VHLTPeeK*')

        >>> my_seq.lower(inplace=True)
        MutableSeq('vhltpeek*')
        >>> my_seq
        MutableSeq('vhltpeek*')
        >>> my_seq.upper(inplace=True)
        MutableSeq('VHLTPEEK*')
        >>> my_seq
        MutableSeq('VHLTPEEK*')

        As ``Seq`` objects are immutable, a ``TypeError`` is raised if
        ``lower`` is called on a ``Seq`` object with ``inplace=True``.

        See also the ``upper`` method.
        """
        data = self._data.lower()
        if inplace:
            if not isinstance(self._data, bytearray):
                raise TypeError("Sequence is immutable")
            self._data[:] = data
            return self
        else:
            return self.__class__(data)

    def isupper(self):
        """Return True if all ASCII characters in data are uppercase.

        If there are no cased characters, the method returns False.
        """
        return self._data.isupper()

    def islower(self):
        """Return True if all ASCII characters in data are lowercase.

        If there are no cased characters, the method returns False.
        """
        return self._data.islower()

    def translate(
        self, table="Standard", stop_symbol="*", to_stop=False, cds=False, gap="-"
    ):
        """Turn a nucleotide sequence into a protein sequence by creating a new sequence object.

        This method will translate DNA or RNA sequences. It should not
        be used on protein sequences as any result will be biologically
        meaningless.

        Arguments:
         - table - Which codon table to use?  This can be either a name
           (string), an NCBI identifier (integer), or a CodonTable
           object (useful for non-standard genetic codes).  This
           defaults to the "Standard" table.
         - stop_symbol - Single character string, what to use for
           terminators.  This defaults to the asterisk, "*".
         - to_stop - Boolean, defaults to False meaning do a full
           translation continuing on past any stop codons (translated as the
           specified stop_symbol).  If True, translation is terminated at
           the first in frame stop codon (and the stop_symbol is not
           appended to the returned protein sequence).
         - cds - Boolean, indicates this is a complete CDS.  If True,
           this checks the sequence starts with a valid alternative start
           codon (which will be translated as methionine, M), that the
           sequence length is a multiple of three, and that there is a
           single in frame stop codon at the end (this will be excluded
           from the protein sequence, regardless of the to_stop option).
           If these tests fail, an exception is raised.
         - gap - Single character string to denote symbol used for gaps.
           Defaults to the minus sign.

        A ``Seq`` object is returned if ``translate`` is called on a ``Seq``
        object; a ``MutableSeq`` object is returned if ``translate`` is called
        pn a ``MutableSeq`` object.

        e.g. Using the standard table:

        >>> coding_dna = Seq("GTGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG")
        >>> coding_dna.translate()
        Seq('VAIVMGR*KGAR*')
        >>> coding_dna.translate(stop_symbol="@")
        Seq('VAIVMGR@KGAR@')
        >>> coding_dna.translate(to_stop=True)
        Seq('VAIVMGR')

        Now using NCBI table 2, where TGA is not a stop codon:

        >>> coding_dna.translate(table=2)
        Seq('VAIVMGRWKGAR*')
        >>> coding_dna.translate(table=2, to_stop=True)
        Seq('VAIVMGRWKGAR')

        In fact, GTG is an alternative start codon under NCBI table 2, meaning
        this sequence could be a complete CDS:

        >>> coding_dna.translate(table=2, cds=True)
        Seq('MAIVMGRWKGAR')

        It isn't a valid CDS under NCBI table 1, due to both the start codon
        and also the in frame stop codons:

        >>> coding_dna.translate(table=1, cds=True)
        Traceback (most recent call last):
            ...
        Bio.Data.CodonTable.TranslationError: First codon 'GTG' is not a start codon

        If the sequence has no in-frame stop codon, then the to_stop argument
        has no effect:

        >>> coding_dna2 = Seq("TTGGCCATTGTAATGGGCCGC")
        >>> coding_dna2.translate()
        Seq('LAIVMGR')
        >>> coding_dna2.translate(to_stop=True)
        Seq('LAIVMGR')

        NOTE - Ambiguous codons like "TAN" or "NNN" could be an amino acid
        or a stop codon.  These are translated as "X".  Any invalid codon
        (e.g. "TA?" or "T-A") will throw a TranslationError.

        NOTE - This does NOT behave like the python string's translate
        method.  For that use str(my_seq).translate(...) instead
        """
        try:
            data = str(self)
        except UndefinedSequenceError:
            # translating an undefined sequence yields an undefined
            # sequence with the length divided by 3
            n = len(self)
            if n % 3 != 0:
                warnings.warn(
                    "Partial codon, len(sequence) not a multiple of three. "
                    "This may become an error in future.",
                    BiopythonWarning,
                )
            return Seq(None, n // 3)

        return self.__class__(
            _translate_str(str(self), table, stop_symbol, to_stop, cds, gap=gap)
        )

    def complement(self, inplace=None):
        """Return the complement as a DNA sequence.

        >>> Seq("CGA").complement()
        Seq('GCT')

        Any U in the sequence is treated as a T:

        >>> Seq("CGAUT").complement(inplace=False)
        Seq('GCTAA')

        In contrast, ``complement_rna`` returns an RNA sequence:

        >>> Seq("CGAUT").complement_rna()
        Seq('GCUAA')

        The sequence is modified in-place and returned if inplace is True:

        >>> my_seq = MutableSeq("CGA")
        >>> my_seq
        MutableSeq('CGA')
        >>> my_seq.complement(inplace=False)
        MutableSeq('GCT')
        >>> my_seq
        MutableSeq('CGA')

        >>> my_seq.complement(inplace=True)
        MutableSeq('GCT')
        >>> my_seq
        MutableSeq('GCT')

        As ``Seq`` objects are immutable, a ``TypeError`` is raised if
        ``complement_rna`` is called on a ``Seq`` object with ``inplace=True``.
        """
        ttable = _dna_complement_table
        try:
            if inplace is None:
                # deprecated
                if isinstance(self._data, bytearray):  # MutableSeq
                    warnings.warn(
                        "mutable_seq.complement() will change in the near "
                        "future and will no longer change the sequence in-"
                        "place by default. Please use\n"
                        "\n"
                        "mutable_seq.complement(inplace=True)\n"
                        "\n"
                        "if you want to continue to use this method to change "
                        "a mutable sequence in-place.",
                        BiopythonDeprecationWarning,
                    )
                    inplace = True
                if isinstance(self._data, _PartiallyDefinedSequenceData):
                    for seq in self._data._data.values():
                        if b"U" in seq or b"u" in seq:
                            warnings.warn(
                                "seq.complement() will change in the near "
                                "future to always return DNA nucleotides only. "
                                "Please use\n"
                                "\n"
                                "seq.complement_rna()\n"
                                "\n"
                                "if you want to receive an RNA sequence instead.",
                                BiopythonDeprecationWarning,
                            )
                            for seq in self._data._data.values():
                                if b"t" in seq or b"T" in seq:
                                    raise ValueError("Mixed RNA/DNA found")
                            ttable = _rna_complement_table
                            break

                elif b"U" in self._data or b"u" in self._data:
                    warnings.warn(
                        "seq.complement() will change in the near future to "
                        "always return DNA nucleotides only. "
                        "Please use\n"
                        "\n"
                        "seq.complement_rna()\n"
                        "\n"
                        "if you want to receive an RNA sequence instead.",
                        BiopythonDeprecationWarning,
                    )
                    if b"t" in self._data or b"T" in self._data:
                        raise ValueError("Mixed RNA/DNA found")
                    ttable = _rna_complement_table
            data = self._data.translate(ttable)
        except UndefinedSequenceError:
            # complement of an undefined sequence is an undefined sequence
            # of the same length
            return self
        if inplace:
            if not isinstance(self._data, bytearray):
                raise TypeError("Sequence is immutable")
            self._data[:] = data
            return self
        return self.__class__(data)

    def complement_rna(self, inplace=False):
        """Return the complement as an RNA sequence.

        >>> Seq("CGA").complement_rna()
        Seq('GCU')

        Any T in the sequence is treated as a U:

        >>> Seq("CGAUT").complement_rna()
        Seq('GCUAA')

        In contrast, ``complement`` returns a DNA sequence by default:

        >>> Seq("CGA").complement()
        Seq('GCT')

        The sequence is modified in-place and returned if inplace is True:

        >>> my_seq = MutableSeq("CGA")
        >>> my_seq
        MutableSeq('CGA')
        >>> my_seq.complement_rna()
        MutableSeq('GCU')
        >>> my_seq
        MutableSeq('CGA')

        >>> my_seq.complement_rna(inplace=True)
        MutableSeq('GCU')
        >>> my_seq
        MutableSeq('GCU')

        As ``Seq`` objects are immutable, a ``TypeError`` is raised if
        ``complement_rna`` is called on a ``Seq`` object with ``inplace=True``.
        """
        try:
            data = self._data.translate(_rna_complement_table)
        except UndefinedSequenceError:
            # complement of an undefined sequence is an undefined sequence
            # of the same length
            return self
        if inplace:
            if not isinstance(self._data, bytearray):
                raise TypeError("Sequence is immutable")
            self._data[:] = data
            return self
        return self.__class__(data)

    def reverse_complement(self, inplace=None):
        """Return the reverse complement as a DNA sequence.

        >>> Seq("CGA").reverse_complement(inplace=False)
        Seq('TCG')

        Any U in the sequence is treated as a T:

        >>> Seq("CGAUT").reverse_complement(inplace=False)
        Seq('AATCG')

        In contrast, ``reverse_complement_rna`` returns an RNA sequence:

        >>> Seq("CGA").reverse_complement_rna()
        Seq('UCG')

        The sequence is modified in-place and returned if inplace is True:

        >>> my_seq = MutableSeq("CGA")
        >>> my_seq
        MutableSeq('CGA')
        >>> my_seq.reverse_complement(inplace=False)
        MutableSeq('TCG')
        >>> my_seq
        MutableSeq('CGA')

        >>> my_seq.reverse_complement(inplace=True)
        MutableSeq('TCG')
        >>> my_seq
        MutableSeq('TCG')

        As ``Seq`` objects are immutable, a ``TypeError`` is raised if
        ``reverse_complement`` is called on a ``Seq`` object with
        ``inplace=True``.
        """
        try:
            if inplace is None:
                # deprecated
                if isinstance(self._data, bytearray):  # MutableSeq
                    warnings.warn(
                        "mutable_seq.reverse_complement() will change in the "
                        "near future and will no longer change the sequence in-"
                        "place by default. Please use\n"
                        "\n"
                        "mutable_seq.reverse_complement(inplace=True)\n"
                        "\n"
                        "if you want to continue to use this method to change "
                        "a mutable sequence in-place.",
                        BiopythonDeprecationWarning,
                    )
                    inplace = True
                else:
                    inplace = False
                if isinstance(self._data, _PartiallyDefinedSequenceData):
                    for seq in self._data._data.values():
                        if b"U" in seq or b"u" in seq:
                            warnings.warn(
                                "seq.reverse_complement() will change in the near "
                                "future to always return DNA nucleotides only. "
                                "Please use\n"
                                "\n"
                                "seq.reverse_complement_rna()\n"
                                "\n"
                                "if you want to receive an RNA sequence instead.",
                                BiopythonDeprecationWarning,
                            )
                            for seq in self._data._data.values():
                                if b"t" in seq or b"T" in seq:
                                    raise ValueError("Mixed RNA/DNA found")
                            return self.reverse_complement_rna(inplace=inplace)
                elif b"U" in self._data or b"u" in self._data:
                    warnings.warn(
                        "seq.reverse_complement() will change in the near "
                        "future to always return DNA nucleotides only. "
                        "Please use\n"
                        "\n"
                        "seq.reverse_complement_rna()\n"
                        "\n"
                        "if you want to receive an RNA sequence instead.",
                        BiopythonDeprecationWarning,
                    )
                    if b"t" in self._data or b"T" in self._data:
                        raise ValueError("Mixed RNA/DNA found")
                    return self.reverse_complement_rna(inplace=inplace)
            data = self._data.translate(_dna_complement_table)
        except UndefinedSequenceError:
            # reverse complement of an undefined sequence is an undefined sequence
            # of the same length
            return self
        if inplace:
            if not isinstance(self._data, bytearray):
                raise TypeError("Sequence is immutable")
            self._data[::-1] = data
            return self
        return self.__class__(data[::-1])

    def reverse_complement_rna(self, inplace=False):
        """Return the reverse complement as an RNA sequence.

        >>> Seq("CGA").reverse_complement_rna()
        Seq('UCG')

        Any T in the sequence is treated as a U:

        >>> Seq("CGAUT").reverse_complement_rna()
        Seq('AAUCG')

        In contrast, ``reverse_complement`` returns a DNA sequence:

        >>> Seq("CGA").reverse_complement(inplace=False)
        Seq('TCG')

        The sequence is modified in-place and returned if inplace is True:

        >>> my_seq = MutableSeq("CGA")
        >>> my_seq
        MutableSeq('CGA')
        >>> my_seq.reverse_complement_rna()
        MutableSeq('UCG')
        >>> my_seq
        MutableSeq('CGA')

        >>> my_seq.reverse_complement_rna(inplace=True)
        MutableSeq('UCG')
        >>> my_seq
        MutableSeq('UCG')

        As ``Seq`` objects are immutable, a ``TypeError`` is raised if
        ``reverse_complement_rna`` is called on a ``Seq`` object with
        ``inplace=True``.
        """
        try:
            data = self._data.translate(_rna_complement_table)
        except UndefinedSequenceError:
            # reverse complement of an undefined sequence is an undefined sequence
            # of the same length
            return self
        if inplace:
            if not isinstance(self._data, bytearray):
                raise TypeError("Sequence is immutable")
            self._data[::-1] = data
            return self
        return self.__class__(data[::-1])

    def transcribe(self, inplace=False):
        """Transcribe a DNA sequence into RNA and return the RNA sequence as a new Seq object.

        >>> from Bio.Seq import Seq
        >>> coding_dna = Seq("ATGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG")
        >>> coding_dna
        Seq('ATGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG')
        >>> coding_dna.transcribe()
        Seq('AUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAG')

        The sequence is modified in-place and returned if inplace is True:

        >>> sequence = MutableSeq("ATGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG")
        >>> sequence
        MutableSeq('ATGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG')
        >>> sequence.transcribe()
        MutableSeq('AUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAG')
        >>> sequence
        MutableSeq('ATGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG')

        >>> sequence.transcribe(inplace=True)
        MutableSeq('AUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAG')
        >>> sequence
        MutableSeq('AUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAG')

        As ``Seq`` objects are immutable, a ``TypeError`` is raised if
        ``transcribe`` is called on a ``Seq`` object with ``inplace=True``.

        Trying to transcribe an RNA sequence has no effect.
        If you have a nucleotide sequence which might be DNA or RNA
        (or even a mixture), calling the transcribe method will ensure
        any T becomes U.

        Trying to transcribe a protein sequence will replace any
        T for Threonine with U for Selenocysteine, which has no
        biologically plausible rational.

        >>> from Bio.Seq import Seq
        >>> my_protein = Seq("MAIVMGRT")
        >>> my_protein.transcribe()
        Seq('MAIVMGRU')
        """
        data = self._data.replace(b"T", b"U").replace(b"t", b"u")
        if inplace:
            if not isinstance(self._data, bytearray):
                raise TypeError("Sequence is immutable")
            self._data[:] = data
            return self
        return self.__class__(data)

    def back_transcribe(self, inplace=False):
        """Return the DNA sequence from an RNA sequence by creating a new Seq object.

        >>> from Bio.Seq import Seq
        >>> messenger_rna = Seq("AUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAG")
        >>> messenger_rna
        Seq('AUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAG')
        >>> messenger_rna.back_transcribe()
        Seq('ATGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG')

        The sequence is modified in-place and returned if inplace is True:

        >>> sequence = MutableSeq("AUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAG")
        >>> sequence
        MutableSeq('AUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAG')
        >>> sequence.back_transcribe()
        MutableSeq('ATGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG')
        >>> sequence
        MutableSeq('AUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAG')

        >>> sequence.back_transcribe(inplace=True)
        MutableSeq('ATGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG')
        >>> sequence
        MutableSeq('ATGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG')

        As ``Seq`` objects are immutable, a ``TypeError`` is raised if
        ``transcribe`` is called on a ``Seq`` object with ``inplace=True``.

        Trying to back-transcribe DNA has no effect, If you have a nucleotide
        sequence which might be DNA or RNA (or even a mixture), calling the
        back-transcribe method will ensure any U becomes T.

        Trying to back-transcribe a protein sequence will replace any U for
        Selenocysteine with T for Threonine, which is biologically meaningless.

        >>> from Bio.Seq import Seq
        >>> my_protein = Seq("MAIVMGRU")
        >>> my_protein.back_transcribe()
        Seq('MAIVMGRT')
        """
        data = self._data.replace(b"U", b"T").replace(b"u", b"t")
        if inplace:
            if not isinstance(self._data, bytearray):
                raise TypeError("Sequence is immutable")
            self._data[:] = data
            return self
        return self.__class__(data)

    def join(self, other):
        """Return a merge of the sequences in other, spaced by the sequence from self.

        Accepts a Seq object, MutableSeq object, or string (and iterates over
        the letters), or an iterable containing Seq, MutableSeq, or string
        objects. These arguments will be concatenated with the calling sequence
        as the spacer:

        >>> concatenated = Seq('NNNNN').join([Seq("AAA"), Seq("TTT"), Seq("PPP")])
        >>> concatenated
        Seq('AAANNNNNTTTNNNNNPPP')

        Joining the letters of a single sequence:

        >>> Seq('NNNNN').join(Seq("ACGT"))
        Seq('ANNNNNCNNNNNGNNNNNT')
        >>> Seq('NNNNN').join("ACGT")
        Seq('ANNNNNCNNNNNGNNNNNT')
        """
        if isinstance(other, _SeqAbstractBaseClass):
            return self.__class__(str(self).join(str(other)))
        elif isinstance(other, str):
            return self.__class__(str(self).join(other))

        from Bio.SeqRecord import SeqRecord  # Lazy to avoid circular imports

        if isinstance(other, SeqRecord):
            raise TypeError("Iterable cannot be a SeqRecord")

        for c in other:
            if isinstance(c, SeqRecord):
                raise TypeError("Iterable cannot contain SeqRecords")
            elif not isinstance(c, (str, _SeqAbstractBaseClass)):
                raise TypeError(
                    "Input must be an iterable of Seq objects, MutableSeq objects, or strings"
                )
        return self.__class__(str(self).join([str(_) for _ in other]))

    def replace(self, old, new, inplace=False):
        """Return a copy with all occurrences of subsequence old replaced by new.

        >>> s = Seq("ACGTAACCGGTT")
        >>> t = s.replace("AC", "XYZ")
        >>> s
        Seq('ACGTAACCGGTT')
        >>> t
        Seq('XYZGTAXYZCGGTT')

        For mutable sequences, passing inplace=True will modify the sequence in place:

        >>> m = MutableSeq("ACGTAACCGGTT")
        >>> t = m.replace("AC", "XYZ")
        >>> m
        MutableSeq('ACGTAACCGGTT')
        >>> t
        MutableSeq('XYZGTAXYZCGGTT')

        >>> m = MutableSeq("ACGTAACCGGTT")
        >>> t = m.replace("AC", "XYZ", inplace=True)
        >>> m
        MutableSeq('XYZGTAXYZCGGTT')
        >>> t
        MutableSeq('XYZGTAXYZCGGTT')

        As ``Seq`` objects are immutable, a ``TypeError`` is raised if
        ``replace`` is called on a ``Seq`` object with ``inplace=True``.
        """
        if isinstance(old, _SeqAbstractBaseClass):
            old = bytes(old)
        elif isinstance(old, str):
            old = old.encode("ASCII")
        if isinstance(new, _SeqAbstractBaseClass):
            new = bytes(new)
        elif isinstance(new, str):
            new = new.encode("ASCII")
        data = self._data.replace(old, new)
        if inplace:
            if not isinstance(self._data, bytearray):
                raise TypeError("Sequence is immutable")
            self._data[:] = data
            return self
        return self.__class__(data)

    @property
    def defined(self):
        """Return True if the sequence is defined, False if undefined or partially defined.

        Zero-length sequences are always considered to be defined.
        """
        if isinstance(self._data, (bytes, bytearray)):
            return True
        else:
            return self._data.defined

    @property
    def defined_ranges(self):
        """Return a tuple of the ranges where the sequence contents is defined.

        The return value has the format ((start1, end1), (start2, end2), ...).
        """
        if isinstance(self._data, (bytes, bytearray)):
            length = len(self)
            if length > 0:
                return ((0, length),)
            else:
                return ()
        else:
            return self._data.defined_ranges


class Seq(_SeqAbstractBaseClass):
    """Read-only sequence object (essentially a string with biological methods).

    Like normal python strings, our basic sequence object is immutable.
    This prevents you from doing my_seq[5] = "A" for example, but does allow
    Seq objects to be used as dictionary keys.

    The Seq object provides a number of string like methods (such as count,
    find, split and strip).

    The Seq object also provides some biological methods, such as complement,
    reverse_complement, transcribe, back_transcribe and translate (which are
    not applicable to protein sequences).
    """

    def __init__(self, data, length=None):
        """Create a Seq object.

        Arguments:
         - data - Sequence, required (string)
         - length - Sequence length, used only if data is None or a dictionary (integer)

        You will typically use Bio.SeqIO to read in sequences from files as
        SeqRecord objects, whose sequence will be exposed as a Seq object via
        the seq property.

        However, you can also create a Seq object directly:

        >>> from Bio.Seq import Seq
        >>> my_seq = Seq("MKQHKAMIVALIVICITAVVAALVTRKDLCEVHIRTGQTEVAVF")
        >>> my_seq
        Seq('MKQHKAMIVALIVICITAVVAALVTRKDLCEVHIRTGQTEVAVF')
        >>> print(my_seq)
        MKQHKAMIVALIVICITAVVAALVTRKDLCEVHIRTGQTEVAVF

        To create a Seq object with for a sequence of known length but
        unknown sequence contents, use None for the data argument and pass
        the sequence length for the length argument. Trying to access the
        sequence contents of a Seq object created in this way will raise
        an UndefinedSequenceError:

        >>> my_undefined_sequence = Seq(None, 20)
        >>> my_undefined_sequence
        Seq(None, length=20)
        >>> len(my_undefined_sequence)
        20
        >>> print(my_undefined_sequence)
        Traceback (most recent call last):
        ...
        Bio.Seq.UndefinedSequenceError: Sequence content is undefined

        If the sequence contents is known for parts of the sequence only, use
        a dictionary for the data argument to pass the known sequence segments:

        >>> my_partially_defined_sequence = Seq({3: "ACGT"}, 10)
        >>> my_partially_defined_sequence
        Seq({3: 'ACGT'}, length=10)
        >>> len(my_partially_defined_sequence)
        10
        >>> print(my_partially_defined_sequence)
        Traceback (most recent call last):
        ...
        Bio.Seq.UndefinedSequenceError: Sequence content is only partially defined
        >>> my_partially_defined_sequence[3:7]
        Seq('ACGT')
        >>> print(my_partially_defined_sequence[3:7])
        ACGT
        """
        if data is None:
            if length is None:
                raise ValueError("length must not be None if data is None")
            elif length == 0:
                self._data = b""
            elif length < 0:
                raise ValueError("length must not be negative.")
            else:
                self._data = _UndefinedSequenceData(length)
        elif isinstance(data, (bytes, SequenceDataAbstractBaseClass)):
            self._data = data
        elif isinstance(data, (bytearray, _SeqAbstractBaseClass)):
            self._data = bytes(data)
        elif isinstance(data, str):
            self._data = bytes(data, encoding="ASCII")
        elif isinstance(data, dict):
            if length is None:
                raise ValueError("length must not be None if data is a dictionary")
            elif length == 0:
                self._data = b""
            elif length < 0:
                raise ValueError("length must not be negative.")
            else:
                end = -1
                starts = sorted(data.keys())
                _data = {}
                for start in starts:
                    seq = data[start]
                    if isinstance(seq, str):
                        seq = bytes(seq, encoding="ASCII")
                    else:
                        try:
                            seq = bytes(seq)
                        except Exception:
                            raise ValueError("Expected bytes-like objects or strings")
                    if start < end:
                        raise ValueError("Sequence data are overlapping.")
                    elif start == end:
                        _data[current] += seq  # noqa: F821
                    else:
                        _data[start] = seq
                        current = start
                    end = start + len(seq)
                if end > length:
                    raise ValueError(
                        "Provided sequence data extend beyond sequence length."
                    )
                elif end == length and current == 0:
                    # sequence is fully defined
                    self._data = _data[current]
                else:
                    self._data = _PartiallyDefinedSequenceData(length, _data)
        else:
            raise TypeError(
                "data should be a string, bytes, bytearray, Seq, or MutableSeq object"
            )

    def __hash__(self):
        """Hash of the sequence as a string for comparison.

        See Seq object comparison documentation (method ``__eq__`` in
        particular) as this has changed in Biopython 1.65. Older versions
        would hash on object identity.
        """
        return hash(self._data)

    def ungap(self, gap="-"):
        """Return a copy of the sequence without the gap character(s) (DEPRECATED).

        The gap character now defaults to the minus sign, and can only
        be specified via the method argument. This is no longer possible
        via the sequence's alphabet (as was possible up to Biopython 1.77):

        >>> from Bio.Seq import Seq
        >>> my_dna = Seq("-ATA--TGAAAT-TTGAAAA")
        >>> my_dna
        Seq('-ATA--TGAAAT-TTGAAAA')
        >>> my_dna.ungap("-")
        Seq('ATATGAAATTTGAAAA')

        This method is DEPRECATED; please use my_dna.replace(gap, "") instead.
        """
        warnings.warn(
            """\
myseq.ungap(gap) is deprecated; please use myseq.replace(gap, "") instead.""",
            BiopythonDeprecationWarning,
        )
        if not gap:
            raise ValueError("Gap character required.")
        elif len(gap) != 1 or not isinstance(gap, str):
            raise ValueError(f"Unexpected gap character, {gap!r}")
        return self.replace(gap, b"")


class MutableSeq(_SeqAbstractBaseClass):
    """An editable sequence object.

    Unlike normal python strings and our basic sequence object (the Seq class)
    which are immutable, the MutableSeq lets you edit the sequence in place.
    However, this means you cannot use a MutableSeq object as a dictionary key.

    >>> from Bio.Seq import MutableSeq
    >>> my_seq = MutableSeq("ACTCGTCGTCG")
    >>> my_seq
    MutableSeq('ACTCGTCGTCG')
    >>> my_seq[5]
    'T'
    >>> my_seq[5] = "A"
    >>> my_seq
    MutableSeq('ACTCGACGTCG')
    >>> my_seq[5]
    'A'
    >>> my_seq[5:8] = "NNN"
    >>> my_seq
    MutableSeq('ACTCGNNNTCG')
    >>> len(my_seq)
    11

    Note that the MutableSeq object does not support as many string-like
    or biological methods as the Seq object.
    """

    def __init__(self, data):
        """Create a MutableSeq object."""
        if isinstance(data, bytearray):
            self._data = data
        elif isinstance(data, bytes):
            self._data = bytearray(data)
        elif isinstance(data, str):
            self._data = bytearray(data, "ASCII")
        elif isinstance(data, MutableSeq):
            self._data = data._data[:]  # Take a copy
        elif isinstance(data, Seq):
            # Make no assumptions about the Seq subclass internal storage
            self._data = bytearray(bytes(data))
        else:
            raise TypeError(
                "data should be a string, bytearray object, Seq object, or a "
                "MutableSeq object"
            )

    def __setitem__(self, index, value):
        """Set a subsequence of single letter via value parameter.

        >>> my_seq = MutableSeq('ACTCGACGTCG')
        >>> my_seq[0] = 'T'
        >>> my_seq
        MutableSeq('TCTCGACGTCG')
        """
        if isinstance(index, numbers.Integral):
            # Replacing a single letter with a new string
            self._data[index] = ord(value)
        else:
            # Replacing a sub-sequence
            if isinstance(value, MutableSeq):
                self._data[index] = value._data
            elif isinstance(value, Seq):
                self._data[index] = bytes(value)
            elif isinstance(value, str):
                self._data[index] = value.encode("ASCII")
            else:
                raise TypeError(f"received unexpected type '{type(value).__name__}'")

    def __delitem__(self, index):
        """Delete a subsequence of single letter.

        >>> my_seq = MutableSeq('ACTCGACGTCG')
        >>> del my_seq[0]
        >>> my_seq
        MutableSeq('CTCGACGTCG')
        """
        # Could be deleting a single letter, or a slice
        del self._data[index]

    def append(self, c):
        """Add a subsequence to the mutable sequence object.

        >>> my_seq = MutableSeq('ACTCGACGTCG')
        >>> my_seq.append('A')
        >>> my_seq
        MutableSeq('ACTCGACGTCGA')

        No return value.
        """
        self._data.append(ord(c.encode("ASCII")))

    def insert(self, i, c):
        """Add a subsequence to the mutable sequence object at a given index.

        >>> my_seq = MutableSeq('ACTCGACGTCG')
        >>> my_seq.insert(0,'A')
        >>> my_seq
        MutableSeq('AACTCGACGTCG')
        >>> my_seq.insert(8,'G')
        >>> my_seq
        MutableSeq('AACTCGACGGTCG')

        No return value.
        """
        self._data.insert(i, ord(c.encode("ASCII")))

    def pop(self, i=(-1)):
        """Remove a subsequence of a single letter at given index.

        >>> my_seq = MutableSeq('ACTCGACGTCG')
        >>> my_seq.pop()
        'G'
        >>> my_seq
        MutableSeq('ACTCGACGTC')
        >>> my_seq.pop()
        'C'
        >>> my_seq
        MutableSeq('ACTCGACGT')

        Returns the last character of the sequence.
        """
        c = self._data[i]
        del self._data[i]
        return chr(c)

    def remove(self, item):
        """Remove a subsequence of a single letter from mutable sequence.

        >>> my_seq = MutableSeq('ACTCGACGTCG')
        >>> my_seq.remove('C')
        >>> my_seq
        MutableSeq('ATCGACGTCG')
        >>> my_seq.remove('A')
        >>> my_seq
        MutableSeq('TCGACGTCG')

        No return value.
        """
        codepoint = ord(item)
        try:
            self._data.remove(codepoint)
        except ValueError:
            raise ValueError("value not found in MutableSeq") from None

    def reverse(self):
        """Modify the mutable sequence to reverse itself.

        No return value.
        """
        self._data.reverse()

    def extend(self, other):
        """Add a sequence to the original mutable sequence object.

        >>> my_seq = MutableSeq('ACTCGACGTCG')
        >>> my_seq.extend('A')
        >>> my_seq
        MutableSeq('ACTCGACGTCGA')
        >>> my_seq.extend('TTT')
        >>> my_seq
        MutableSeq('ACTCGACGTCGATTT')

        No return value.
        """
        if isinstance(other, MutableSeq):
            self._data.extend(other._data)
        elif isinstance(other, Seq):
            self._data.extend(bytes(other))
        elif isinstance(other, str):
            self._data.extend(other.encode("ASCII"))
        else:
            raise TypeError("expected a string, Seq or MutableSeq")


class UndefinedSequenceError(ValueError):
    """Sequence contents is undefined."""


class _UndefinedSequenceData(SequenceDataAbstractBaseClass):
    """Stores the length of a sequence with an undefined sequence contents (PRIVATE).

    Objects of this class can be used to create a Seq object to represent
    sequences with a known length, but an unknown sequence contents.
    Calling __len__ returns the sequence length, calling __getitem__ raises an
    UndefinedSequenceError except for requests of zero size, for which it
    returns an empty bytes object.
    """

    __slots__ = ("_length",)

    def __init__(self, length):
        """Initialize the object with the sequence length.

        The calling function is responsible for ensuring that the length is
        greater than zero.
        """
        self._length = length
        super().__init__()

    def __getitem__(self, key):
        if isinstance(key, slice):
            start, end, step = key.indices(self._length)
            size = len(range(start, end, step))
            if size == 0:
                return b""
            return _UndefinedSequenceData(size)
        else:
            raise UndefinedSequenceError("Sequence content is undefined")

    def __len__(self):
        return self._length

    def __bytes__(self):
        raise UndefinedSequenceError("Sequence content is undefined")

    def __add__(self, other):
        length = len(self) + len(other)
        try:
            other = bytes(other)
        except UndefinedSequenceError:
            if isinstance(other, _UndefinedSequenceData):
                return _UndefinedSequenceData(length)
            else:
                return NotImplemented
                # _PartiallyDefinedSequenceData.__radd__ will handle this
        else:
            data = {len(self): other}
            return _PartiallyDefinedSequenceData(length, data)

    def __radd__(self, other):
        data = {0: bytes(other)}
        length = len(other) + len(self)
        return _PartiallyDefinedSequenceData(length, data)

    def upper(self):
        """Return an upper case copy of the sequence."""
        # An upper case copy of an undefined sequence is an undefined
        # sequence of the same length
        return _UndefinedSequenceData(self._length)

    def lower(self):
        """Return a lower case copy of the sequence."""
        # A lower case copy of an undefined sequence is an undefined
        # sequence of the same length
        return _UndefinedSequenceData(self._length)

    def isupper(self):
        """Return True if all ASCII characters in data are uppercase.

        If there are no cased characters, the method returns False.
        """
        # Character case is irrelevant for an undefined sequence
        raise UndefinedSequenceError("Sequence content is undefined")

    def islower(self):
        """Return True if all ASCII characters in data are lowercase.

        If there are no cased characters, the method returns False.
        """
        # Character case is irrelevant for an undefined sequence
        raise UndefinedSequenceError("Sequence content is undefined")

    def replace(self, old, new):
        """Return a copy with all occurrences of substring old replaced by new."""
        # Replacing substring old by new in an undefined sequence will result
        # in an undefined sequence of the same length, if old and new have the
        # number of characters.
        if len(old) != len(new):
            raise UndefinedSequenceError("Sequence content is undefined")
        return _UndefinedSequenceData(self._length)

    @property
    def defined(self):
        """Return False, as the sequence is not defined and has a non-zero length."""
        return False

    @property
    def defined_ranges(self):
        """Return a tuple of the ranges where the sequence contents is defined.

        As the sequence contents of an _UndefinedSequenceData object is fully
        undefined, the return value is always an empty tuple.
        """
        return ()


class _PartiallyDefinedSequenceData(SequenceDataAbstractBaseClass):
    """Stores the length of a sequence with an undefined sequence contents (PRIVATE).

    Objects of this class can be used to create a Seq object to represent
    sequences with a known length, but with a sequence contents that is only
    partially known.
    Calling __len__ returns the sequence length, calling __getitem__ returns
    the sequence contents if known, otherwise an UndefinedSequenceError is
    raised.
    """

    __slots__ = ("_length", "_data")

    def __init__(self, length, data):
        """Initialize with the sequence length and defined sequence segments.

        The calling function is responsible for ensuring that the length is
        greater than zero.
        """
        self._length = length
        self._data = data
        super().__init__()

    def __getitem__(self, key):
        if isinstance(key, slice):
            start, end, step = key.indices(self._length)
            size = len(range(start, end, step))
            if size == 0:
                return b""
            data = {}
            for s, d in self._data.items():
                indices = range(-s, -s + self._length)[key]
                e = indices.stop
                if step > 0:
                    if e <= 0:
                        continue
                    if indices.start < 0:
                        s = indices.start % step
                    else:
                        s = indices.start
                else:  # step < 0
                    if e < 0:
                        e = None
                    end = len(d) - 1
                    if indices.start > end:
                        s = end + (indices.start - end) % step
                    else:
                        s = indices.start
                    if s < 0:
                        continue
                start = (s - indices.start) // step
                d = d[s:e:step]
                if d:
                    data[start] = d
            if len(data) == 0:  # Fully undefined sequence
                return _UndefinedSequenceData(size)
            # merge adjacent sequence segments
            end = -1
            previous = None  # not needed here, but it keeps flake happy
            items = data.items()
            data = {}
            for start, seq in items:
                if end == start:
                    data[previous] += seq
                else:
                    data[start] = seq
                    previous = start
                end = start + len(seq)
            if len(data) == 1:
                seq = data.get(0)
                if seq is not None and len(seq) == size:
                    return seq  # Fully defined sequence; return bytes
            if step < 0:
                # use this after we drop Python 3.7:
                # data = {start: data[start] for start in reversed(data)}
                # use this as long as we support Python 3.7:
                data = {start: data[start] for start in reversed(list(data.keys()))}
            return _PartiallyDefinedSequenceData(size, data)
        elif self._length <= key:
            raise IndexError("sequence index out of range")
        else:
            for start, seq in self._data.items():
                if start <= key and key < start + len(seq):
                    return seq[key - start]
            raise UndefinedSequenceError("Sequence at position %d is undefined" % key)

    def __len__(self):
        return self._length

    def __bytes__(self):
        raise UndefinedSequenceError("Sequence content is only partially defined")

    def __add__(self, other):
        length = len(self) + len(other)
        data = dict(self._data)
        items = list(self._data.items())
        start, seq = items[-1]
        end = start + len(seq)
        try:
            other = bytes(other)
        except UndefinedSequenceError:
            if isinstance(other, _UndefinedSequenceData):
                pass
            elif isinstance(other, _PartiallyDefinedSequenceData):
                other_items = list(other._data.items())
                if end == len(self):
                    other_start, other_seq = other_items.pop(0)
                    if other_start == 0:
                        data[start] += other_seq
                    else:
                        data[len(self) + other_start] = other_seq
                for other_start, other_seq in other_items:
                    data[len(self) + other_start] = other_seq
        else:
            if end == len(self):
                data[start] += other
            else:
                data[len(self)] = other
        return _PartiallyDefinedSequenceData(length, data)

    def __radd__(self, other):
        length = len(other) + len(self)
        try:
            other = bytes(other)
        except UndefinedSequenceError:
            data = {len(other) + start: seq for start, seq in self._data.items()}
        else:
            data = {0: other}
            items = list(self._data.items())
            start, seq = items.pop(0)
            if start == 0:
                data[0] += seq
            else:
                data[len(other) + start] = seq
            for start, seq in items:
                data[len(other) + start] = seq
        return _PartiallyDefinedSequenceData(length, data)

    def __mul__(self, other):
        length = self._length
        items = self._data.items()
        data = {}
        end = -1
        previous = None  # not needed here, but it keeps flake happy
        for i in range(other):
            for start, seq in items:
                start += i * length
                if end == start:
                    data[previous] += seq
                else:
                    data[start] = seq
                    previous = start
            end = start + len(seq)
        return _PartiallyDefinedSequenceData(length * other, data)

    def upper(self):
        """Return an upper case copy of the sequence."""
        data = {start: seq.upper() for start, seq in self._data.items()}
        return _PartiallyDefinedSequenceData(self._length, data)

    def lower(self):
        """Return a lower case copy of the sequence."""
        data = {start: seq.lower() for start, seq in self._data.items()}
        return _PartiallyDefinedSequenceData(self._length, data)

    def isupper(self):
        """Return True if all ASCII characters in data are uppercase.

        If there are no cased characters, the method returns False.
        """
        # Character case is irrelevant for an undefined sequence
        raise UndefinedSequenceError("Sequence content is only partially defined")

    def islower(self):
        """Return True if all ASCII characters in data are lowercase.

        If there are no cased characters, the method returns False.
        """
        # Character case is irrelevant for an undefined sequence
        raise UndefinedSequenceError("Sequence content is only partially defined")

    def translate(self, table, delete=b""):
        """Return a copy with each character mapped by the given translation table.

          table
            Translation table, which must be a bytes object of length 256.

        All characters occurring in the optional argument delete are removed.
        The remaining characters are mapped through the given translation table.
        """
        items = self._data.items()
        data = {start: seq.translate(table, delete) for start, seq in items}
        return _PartiallyDefinedSequenceData(self._length, data)

    def replace(self, old, new):
        """Return a copy with all occurrences of substring old replaced by new."""
        # Replacing substring old by new in the undefined sequence segments
        # will result in an undefined sequence segment of the same length, if
        # old and new have the number of characters. If not, an error is raised,
        # as the correct start positions cannot be calculated reliably.
        if len(old) != len(new):
            raise UndefinedSequenceError(
                "Sequence content is only partially defined; substring \n"
                "replacement cannot be performed reliably"
            )
        items = self._data.items()
        data = {start: seq.replace(old, new) for start, seq in items}
        return _PartiallyDefinedSequenceData(self._length, data)

    @property
    def defined(self):
        """Return False, as the sequence is not fully defined and has a non-zero length."""
        return False

    @property
    def defined_ranges(self):
        """Return a tuple of the ranges where the sequence contents is defined.

        The return value has the format ((start1, end1), (start2, end2), ...).
        """
        return tuple((start, start + len(seq)) for start, seq in self._data.items())


# The transcribe, backward_transcribe, and translate functions are
# user-friendly versions of the corresponding Seq/MutableSeq methods.
# The functions work both on Seq objects, and on strings.


def transcribe(dna):
    """Transcribe a DNA sequence into RNA.

    If given a string, returns a new string object.

    Given a Seq or MutableSeq, returns a new Seq object.

    e.g.

    >>> transcribe("ACTGN")
    'ACUGN'
    """
    if isinstance(dna, Seq):
        return dna.transcribe()
    elif isinstance(dna, MutableSeq):
        return Seq(dna).transcribe()
    else:
        return dna.replace("T", "U").replace("t", "u")


def back_transcribe(rna):
    """Return the RNA sequence back-transcribed into DNA.

    If given a string, returns a new string object.

    Given a Seq or MutableSeq, returns a new Seq object.

    e.g.

    >>> back_transcribe("ACUGN")
    'ACTGN'
    """
    if isinstance(rna, Seq):
        return rna.back_transcribe()
    elif isinstance(rna, MutableSeq):
        return Seq(rna).back_transcribe()
    else:
        return rna.replace("U", "T").replace("u", "t")


def _translate_str(
    sequence, table, stop_symbol="*", to_stop=False, cds=False, pos_stop="X", gap=None
):
    """Translate nucleotide string into a protein string (PRIVATE).

    Arguments:
     - sequence - a string
     - table - Which codon table to use?  This can be either a name (string),
       an NCBI identifier (integer), or a CodonTable object (useful for
       non-standard genetic codes).  This defaults to the "Standard" table.
     - stop_symbol - a single character string, what to use for terminators.
     - to_stop - boolean, should translation terminate at the first
       in frame stop codon?  If there is no in-frame stop codon
       then translation continues to the end.
     - pos_stop - a single character string for a possible stop codon
       (e.g. TAN or NNN)
     - cds - Boolean, indicates this is a complete CDS.  If True, this
       checks the sequence starts with a valid alternative start
       codon (which will be translated as methionine, M), that the
       sequence length is a multiple of three, and that there is a
       single in frame stop codon at the end (this will be excluded
       from the protein sequence, regardless of the to_stop option).
       If these tests fail, an exception is raised.
     - gap - Single character string to denote symbol used for gaps.
       Defaults to None.

    Returns a string.

    e.g.

    >>> from Bio.Data import CodonTable
    >>> table = CodonTable.ambiguous_dna_by_id[1]
    >>> _translate_str("AAA", table)
    'K'
    >>> _translate_str("TAR", table)
    '*'
    >>> _translate_str("TAN", table)
    'X'
    >>> _translate_str("TAN", table, pos_stop="@")
    '@'
    >>> _translate_str("TA?", table)
    Traceback (most recent call last):
       ...
    Bio.Data.CodonTable.TranslationError: Codon 'TA?' is invalid

    In a change to older versions of Biopython, partial codons are now
    always regarded as an error (previously only checked if cds=True)
    and will trigger a warning (likely to become an exception in a
    future release).

    If **cds=True**, the start and stop codons are checked, and the start
    codon will be translated at methionine. The sequence must be an
    while number of codons.

    >>> _translate_str("ATGCCCTAG", table, cds=True)
    'MP'
    >>> _translate_str("AAACCCTAG", table, cds=True)
    Traceback (most recent call last):
       ...
    Bio.Data.CodonTable.TranslationError: First codon 'AAA' is not a start codon
    >>> _translate_str("ATGCCCTAGCCCTAG", table, cds=True)
    Traceback (most recent call last):
       ...
    Bio.Data.CodonTable.TranslationError: Extra in frame stop codon 'TAG' found.
    """
    try:
        table_id = int(table)
    except ValueError:
        # Assume it's a table name
        # The same table can be used for RNA or DNA
        try:
            codon_table = CodonTable.ambiguous_generic_by_name[table]
        except KeyError:
            if isinstance(table, str):
                raise ValueError(
                    "The Bio.Seq translate methods and function DO NOT "
                    "take a character string mapping table like the python "
                    "string object's translate method. "
                    "Use str(my_seq).translate(...) instead."
                ) from None
            else:
                raise TypeError("table argument must be integer or string") from None
    except (AttributeError, TypeError):
        # Assume it's a CodonTable object
        if isinstance(table, CodonTable.CodonTable):
            codon_table = table
        else:
            raise ValueError("Bad table argument") from None
    else:
        # Assume it's a table ID
        # The same table can be used for RNA or DNA
        codon_table = CodonTable.ambiguous_generic_by_id[table_id]
    sequence = sequence.upper()
    amino_acids = []
    forward_table = codon_table.forward_table
    stop_codons = codon_table.stop_codons
    if codon_table.nucleotide_alphabet is not None:
        valid_letters = set(codon_table.nucleotide_alphabet.upper())
    else:
        # Assume the worst case, ambiguous DNA or RNA:
        valid_letters = set(
            IUPACData.ambiguous_dna_letters.upper()
            + IUPACData.ambiguous_rna_letters.upper()
        )
    n = len(sequence)

    # Check for tables with 'ambiguous' (dual-coding) stop codons:
    dual_coding = [c for c in stop_codons if c in forward_table]
    if dual_coding:
        c = dual_coding[0]
        if to_stop:
            raise ValueError(
                "You cannot use 'to_stop=True' with this table as it contains"
                f" {len(dual_coding)} codon(s) which can be both STOP and an"
                f" amino acid (e.g. '{c}' -> '{forward_table[c]}' or STOP)."
            )
        warnings.warn(
            f"This table contains {len(dual_coding)} codon(s) which code(s) for"
            f" both STOP and an amino acid (e.g. '{c}' -> '{forward_table[c]}'"
            " or STOP). Such codons will be translated as amino acid.",
            BiopythonWarning,
        )

    if cds:
        if str(sequence[:3]).upper() not in codon_table.start_codons:
            raise CodonTable.TranslationError(
                f"First codon '{sequence[:3]}' is not a start codon"
            )
        if n % 3 != 0:
            raise CodonTable.TranslationError(
                f"Sequence length {n} is not a multiple of three"
            )
        if str(sequence[-3:]).upper() not in stop_codons:
            raise CodonTable.TranslationError(
                f"Final codon '{sequence[-3:]}' is not a stop codon"
            )
        # Don't translate the stop symbol, and manually translate the M
        sequence = sequence[3:-3]
        n -= 6
        amino_acids = ["M"]
    elif n % 3 != 0:
        warnings.warn(
            "Partial codon, len(sequence) not a multiple of three. "
            "Explicitly trim the sequence or add trailing N before "
            "translation. This may become an error in future.",
            BiopythonWarning,
        )
    if gap is not None:
        if not isinstance(gap, str):
            raise TypeError("Gap character should be a single character string.")
        elif len(gap) > 1:
            raise ValueError("Gap character should be a single character string.")

    for i in range(0, n - n % 3, 3):
        codon = sequence[i : i + 3]
        try:
            amino_acids.append(forward_table[codon])
        except (KeyError, CodonTable.TranslationError):
            if codon in codon_table.stop_codons:
                if cds:
                    raise CodonTable.TranslationError(
                        f"Extra in frame stop codon '{codon}' found."
                    ) from None
                if to_stop:
                    break
                amino_acids.append(stop_symbol)
            elif valid_letters.issuperset(set(codon)):
                # Possible stop codon (e.g. NNN or TAN)
                amino_acids.append(pos_stop)
            elif gap is not None and codon == gap * 3:
                # Gapped translation
                amino_acids.append(gap)
            else:
                raise CodonTable.TranslationError(
                    f"Codon '{codon}' is invalid"
                ) from None
    return "".join(amino_acids)


def translate(
    sequence, table="Standard", stop_symbol="*", to_stop=False, cds=False, gap=None
):
    """Translate a nucleotide sequence into amino acids.

    If given a string, returns a new string object. Given a Seq or
    MutableSeq, returns a Seq object.

    Arguments:
     - table - Which codon table to use?  This can be either a name
       (string), an NCBI identifier (integer), or a CodonTable object
       (useful for non-standard genetic codes).  Defaults to the "Standard"
       table.
     - stop_symbol - Single character string, what to use for any
       terminators, defaults to the asterisk, "*".
     - to_stop - Boolean, defaults to False meaning do a full
       translation continuing on past any stop codons
       (translated as the specified stop_symbol).  If
       True, translation is terminated at the first in
       frame stop codon (and the stop_symbol is not
       appended to the returned protein sequence).
     - cds - Boolean, indicates this is a complete CDS.  If True, this
       checks the sequence starts with a valid alternative start
       codon (which will be translated as methionine, M), that the
       sequence length is a multiple of three, and that there is a
       single in frame stop codon at the end (this will be excluded
       from the protein sequence, regardless of the to_stop option).
       If these tests fail, an exception is raised.
     - gap - Single character string to denote symbol used for gaps.
       Defaults to None.

    A simple string example using the default (standard) genetic code:

    >>> coding_dna = "GTGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG"
    >>> translate(coding_dna)
    'VAIVMGR*KGAR*'
    >>> translate(coding_dna, stop_symbol="@")
    'VAIVMGR@KGAR@'
    >>> translate(coding_dna, to_stop=True)
    'VAIVMGR'

    Now using NCBI table 2, where TGA is not a stop codon:

    >>> translate(coding_dna, table=2)
    'VAIVMGRWKGAR*'
    >>> translate(coding_dna, table=2, to_stop=True)
    'VAIVMGRWKGAR'

    In fact this example uses an alternative start codon valid under NCBI
    table 2, GTG, which means this example is a complete valid CDS which
    when translated should really start with methionine (not valine):

    >>> translate(coding_dna, table=2, cds=True)
    'MAIVMGRWKGAR'

    Note that if the sequence has no in-frame stop codon, then the to_stop
    argument has no effect:

    >>> coding_dna2 = "GTGGCCATTGTAATGGGCCGC"
    >>> translate(coding_dna2)
    'VAIVMGR'
    >>> translate(coding_dna2, to_stop=True)
    'VAIVMGR'

    NOTE - Ambiguous codons like "TAN" or "NNN" could be an amino acid
    or a stop codon.  These are translated as "X".  Any invalid codon
    (e.g. "TA?" or "T-A") will throw a TranslationError.

    It will however translate either DNA or RNA.

    NOTE - Since version 1.71 Biopython contains codon tables with 'ambiguous
    stop codons'. These are stop codons with unambiguous sequence but which
    have a context dependent coding as STOP or as amino acid. With these tables
    'to_stop' must be False (otherwise a ValueError is raised). The dual
    coding codons will always be translated as amino acid, except for
    'cds=True', where the last codon will be translated as STOP.

    >>> coding_dna3 = "ATGGCACGGAAGTGA"
    >>> translate(coding_dna3)
    'MARK*'

    >>> translate(coding_dna3, table=27)  # Table 27: TGA -> STOP or W
    'MARKW'

    It will however raise a BiopythonWarning (not shown).

    >>> translate(coding_dna3, table=27, cds=True)
    'MARK'

    >>> translate(coding_dna3, table=27, to_stop=True)
    Traceback (most recent call last):
       ...
    ValueError: You cannot use 'to_stop=True' with this table ...
    """
    if isinstance(sequence, Seq):
        return sequence.translate(table, stop_symbol, to_stop, cds)
    elif isinstance(sequence, MutableSeq):
        # Return a Seq object
        return Seq(sequence).translate(table, stop_symbol, to_stop, cds)
    else:
        # Assume it's a string, return a string
        return _translate_str(sequence, table, stop_symbol, to_stop, cds, gap=gap)


def reverse_complement(sequence, inplace=None):
    """Return the reverse complement as a DNA sequence.

    If given a string, returns a new string object.
    Given a Seq object, returns a new Seq object.
    Given a MutableSeq, returns a new MutableSeq object.
    Given a SeqRecord object, returns a new SeqRecord object.

    >>> my_seq = "CGA"
    >>> reverse_complement(my_seq, inplace=False)
    'TCG'
    >>> my_seq = Seq("CGA")
    >>> reverse_complement(my_seq, inplace=False)
    Seq('TCG')
    >>> my_seq = MutableSeq("CGA")
    >>> reverse_complement(my_seq, inplace=False)
    MutableSeq('TCG')
    >>> my_seq
    MutableSeq('CGA')

    Any U in the sequence is treated as a T:

    >>> reverse_complement(Seq("CGAUT"), inplace=False)
    Seq('AATCG')

    In contrast, ``reverse_complement_rna`` returns an RNA sequence:

    >>> reverse_complement_rna(Seq("CGAUT"))
    Seq('AAUCG')

    Supports and lower- and upper-case characters, and unambiguous and
    ambiguous nucleotides. All other characters are not converted:

    >>> reverse_complement("ACGTUacgtuXYZxyz", inplace=False)
    'zrxZRXaacgtAACGT'

    The sequence is modified in-place and returned if inplace is True:

    >>> my_seq = MutableSeq("CGA")
    >>> reverse_complement(my_seq, inplace=True)
    MutableSeq('TCG')
    >>> my_seq
    MutableSeq('TCG')

    As strings and ``Seq`` objects are immutable, a ``TypeError`` is
    raised if ``reverse_complement`` is called on a ``Seq`` object with
    ``inplace=True``.
    """
    from Bio.SeqRecord import SeqRecord  # Lazy to avoid circular imports

    if inplace is None:
        # deprecated
        if isinstance(sequence, Seq):
            if b"U" in sequence._data or b"u" in sequence._data:
                warnings.warn(
                    "reverse_complement(sequence) will change in the "
                    "near future to always return DNA nucleotides only. "
                    "Please use\n"
                    "\n"
                    "reverse_complement_rna(sequence)\n"
                    "\n"
                    "if you want to receive an RNA sequence instead.",
                    BiopythonDeprecationWarning,
                )
                if b"T" in sequence._data or b"t" in sequence._data:
                    raise ValueError("Mixed RNA/DNA found")
                return sequence.reverse_complement_rna()
        elif isinstance(sequence, MutableSeq):
            # Return a Seq
            # Don't use the MutableSeq reverse_complement method as it is
            # 'in place'.
            warnings.warn(
                "reverse_complement(mutable_seq) will change in the near "
                "future to return a MutableSeq object instead of a Seq object.",
                BiopythonDeprecationWarning,
            )
            return Seq(sequence).reverse_complement()
        else:  # str
            if "U" in sequence or "u" in sequence:
                warnings.warn(
                    "reverse_complement(sequence) will change in the "
                    "near future to always return DNA nucleotides only. "
                    "Please use\n"
                    "\n"
                    "reverse_complement_rna(sequence)\n"
                    "\n"
                    "if you want to receive an RNA sequence instead.",
                    BiopythonDeprecationWarning,
                )
                if "T" in sequence or "t" in sequence:
                    raise ValueError("Mixed RNA/DNA found")
                sequence = sequence.encode("ASCII")
                sequence = sequence.translate(_rna_complement_table)
                return sequence.decode("ASCII")[::-1]
    if isinstance(sequence, (Seq, MutableSeq)):
        return sequence.reverse_complement(inplace)
    if isinstance(sequence, SeqRecord):
        if inplace:
            raise TypeError("SeqRecords are immutable")
        return sequence.reverse_complement()
    # Assume it's a string.
    if inplace:
        raise TypeError("strings are immutable")
    sequence = sequence.encode("ASCII")
    sequence = sequence.translate(_dna_complement_table)
    sequence = sequence.decode("ASCII")
    return sequence[::-1]


def reverse_complement_rna(sequence, inplace=False):
    """Return the reverse complement as an RNA sequence.

    If given a string, returns a new string object.
    Given a Seq object, returns a new Seq object.
    Given a MutableSeq, returns a new MutableSeq object.
    Given a SeqRecord object, returns a new SeqRecord object.

    >>> my_seq = "CGA"
    >>> reverse_complement_rna(my_seq)
    'UCG'
    >>> my_seq = Seq("CGA")
    >>> reverse_complement_rna(my_seq)
    Seq('UCG')
    >>> my_seq = MutableSeq("CGA")
    >>> reverse_complement_rna(my_seq)
    MutableSeq('UCG')
    >>> my_seq
    MutableSeq('CGA')

    Any T in the sequence is treated as a U:

    >>> reverse_complement_rna(Seq("CGAUT"))
    Seq('AAUCG')

    In contrast, ``reverse_complement`` returns a DNA sequence:

    >>> reverse_complement(Seq("CGAUT"), inplace=False)
    Seq('AATCG')

    Supports and lower- and upper-case characters, and unambiguous and
    ambiguous nucleotides. All other characters are not converted:

    >>> reverse_complement_rna("ACGTUacgtuXYZxyz")
    'zrxZRXaacguAACGU'

    The sequence is modified in-place and returned if inplace is True:

    >>> my_seq = MutableSeq("CGA")
    >>> reverse_complement_rna(my_seq, inplace=True)
    MutableSeq('UCG')
    >>> my_seq
    MutableSeq('UCG')

    As strings and ``Seq`` objects are immutable, a ``TypeError`` is
    raised if ``reverse_complement`` is called on a ``Seq`` object with
    ``inplace=True``.
    """
    from Bio.SeqRecord import SeqRecord  # Lazy to avoid circular imports

    if isinstance(sequence, (Seq, MutableSeq)):
        return sequence.reverse_complement_rna(inplace)
    if isinstance(sequence, SeqRecord):
        if inplace:
            raise TypeError("SeqRecords are immutable")
        return sequence.reverse_complement_rna()
    # Assume it's a string.
    if inplace:
        raise TypeError("strings are immutable")
    sequence = sequence.encode("ASCII")
    sequence = sequence.translate(_rna_complement_table)
    sequence = sequence.decode("ASCII")
    return sequence[::-1]


def complement(sequence, inplace=None):
    """Return the complement as a DNA sequence.

    If given a string, returns a new string object.
    Given a Seq object, returns a new Seq object.
    Given a MutableSeq, returns a new MutableSeq object.
    Given a SeqRecord object, returns a new SeqRecord object.

    >>> my_seq = "CGA"
    >>> complement(my_seq, inplace=False)
    'GCT'
    >>> my_seq = Seq("CGA")
    >>> complement(my_seq, inplace=False)
    Seq('GCT')
    >>> my_seq = MutableSeq("CGA")
    >>> complement(my_seq, inplace=False)
    MutableSeq('GCT')
    >>> my_seq
    MutableSeq('CGA')

    Any U in the sequence is treated as a T:

    >>> complement(Seq("CGAUT"), inplace=False)
    Seq('GCTAA')

    In contrast, ``complement_rna`` returns an RNA sequence:

    >>> complement_rna(Seq("CGAUT"))
    Seq('GCUAA')

    Supports and lower- and upper-case characters, and unambiguous and
    ambiguous nucleotides. All other characters are not converted:

    >>> complement("ACGTUacgtuXYZxyz", inplace=False)
    'TGCAAtgcaaXRZxrz'

    The sequence is modified in-place and returned if inplace is True:

    >>> my_seq = MutableSeq("CGA")
    >>> complement(my_seq, inplace=True)
    MutableSeq('GCT')
    >>> my_seq
    MutableSeq('GCT')

    As strings and ``Seq`` objects are immutable, a ``TypeError`` is
    raised if ``reverse_complement`` is called on a ``Seq`` object with
    ``inplace=True``.
    """
    from Bio.SeqRecord import SeqRecord  # Lazy to avoid circular imports

    if inplace is None:
        # deprecated
        if isinstance(sequence, Seq):
            # Return a Seq
            if b"U" in sequence._data or b"u" in sequence._data:
                warnings.warn(
                    "complement(sequence) will change in the near "
                    "future to always return DNA nucleotides only. "
                    "Please use\n"
                    "\n"
                    "complement_rna(sequence)\n"
                    "\n"
                    "if you want to receive an RNA sequence instead.",
                    BiopythonDeprecationWarning,
                )
                if b"T" in sequence._data or b"t" in sequence._data:
                    raise ValueError("Mixed RNA/DNA found")
                return sequence.complement_rna()
        elif isinstance(sequence, MutableSeq):
            # Return a Seq
            # Don't use the MutableSeq reverse_complement method as it is
            # 'in place'.
            warnings.warn(
                "complement(mutable_seq) will change in the near future"
                "to return a MutableSeq object instead of a Seq object.",
                BiopythonDeprecationWarning,
            )
            return Seq(sequence).complement()
        else:
            if "U" in sequence or "u" in sequence:
                warnings.warn(
                    "complement(sequence) will change in the near "
                    "future to always return DNA nucleotides only. "
                    "Please use\n"
                    "\n"
                    "complement_rna(sequence)\n"
                    "\n"
                    "if you want to receive an RNA sequence instead.",
                    BiopythonDeprecationWarning,
                )
                if "T" in sequence or "t" in sequence:
                    raise ValueError("Mixed RNA/DNA found")
                ttable = _rna_complement_table
                sequence = sequence.encode("ASCII")
                sequence = sequence.translate(ttable)
                return sequence.decode("ASCII")
    if isinstance(sequence, (Seq, MutableSeq)):
        return sequence.complement(inplace)
    if isinstance(sequence, SeqRecord):
        if inplace:
            raise TypeError("SeqRecords are immutable")
        return sequence.complement()
    # Assume it's a string.
    if inplace:
        raise TypeError("strings are immutable")
    sequence = sequence.encode("ASCII")
    sequence = sequence.translate(_dna_complement_table)
    return sequence.decode("ASCII")


def complement_rna(sequence, inplace=False):
    """Return the complement as an RNA sequence.

    If given a string, returns a new string object.
    Given a Seq object, returns a new Seq object.
    Given a MutableSeq, returns a new MutableSeq object.
    Given a SeqRecord object, returns a new SeqRecord object.

    >>> my_seq = "CGA"
    >>> complement_rna(my_seq)
    'GCU'
    >>> my_seq = Seq("CGA")
    >>> complement_rna(my_seq)
    Seq('GCU')
    >>> my_seq = MutableSeq("CGA")
    >>> complement_rna(my_seq)
    MutableSeq('GCU')
    >>> my_seq
    MutableSeq('CGA')

    Any T in the sequence is treated as a U:

    >>> complement_rna(Seq("CGAUT"))
    Seq('GCUAA')

    In contrast, ``complement`` returns a DNA sequence:

    >>> complement(Seq("CGAUT"),inplace=False)
    Seq('GCTAA')

    Supports and lower- and upper-case characters, and unambiguous and
    ambiguous nucleotides. All other characters are not converted:

    >>> complement_rna("ACGTUacgtuXYZxyz")
    'UGCAAugcaaXRZxrz'

    The sequence is modified in-place and returned if inplace is True:

    >>> my_seq = MutableSeq("CGA")
    >>> complement(my_seq, inplace=True)
    MutableSeq('GCT')
    >>> my_seq
    MutableSeq('GCT')

    As strings and ``Seq`` objects are immutable, a ``TypeError`` is
    raised if ``reverse_complement`` is called on a ``Seq`` object with
    ``inplace=True``.
    """
    from Bio.SeqRecord import SeqRecord  # Lazy to avoid circular imports

    if isinstance(sequence, (Seq, MutableSeq)):
        return sequence.complement_rna(inplace)
    if isinstance(sequence, SeqRecord):
        if inplace:
            raise TypeError("SeqRecords are immutable")
        return sequence.complement_rna()
    # Assume it's a string.
    if inplace:
        raise TypeError("strings are immutable")
    sequence = sequence.encode("ASCII")
    sequence = sequence.translate(_rna_complement_table)
    return sequence.decode("ASCII")


def _test():
    """Run the Bio.Seq module's doctests (PRIVATE)."""
    print("Running doctests...")
    import doctest

    doctest.testmod(optionflags=doctest.IGNORE_EXCEPTION_DETAIL)
    print("Done")


if __name__ == "__main__":
    _test()