File size: 91,857 Bytes
b7731cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
# Copyright 2009-2020 by Peter Cock.  All rights reserved.
#
# This file is part of the Biopython distribution and governed by your
# choice of the "Biopython License Agreement" or the "BSD 3-Clause License".
# Please see the LICENSE file that should have been included as part of this
# package.
"""Bio.SeqIO support for the FASTQ and QUAL file formats.

Note that you are expected to use this code via the Bio.SeqIO interface, as
shown below.

The FASTQ file format is used frequently at the Wellcome Trust Sanger Institute
to bundle a FASTA sequence and its PHRED quality data (integers between 0 and
90).  Rather than using a single FASTQ file, often paired FASTA and QUAL files
are used containing the sequence and the quality information separately.

The PHRED software reads DNA sequencing trace files, calls bases, and
assigns a non-negative quality value to each called base using a logged
transformation of the error probability, Q = -10 log10( Pe ), for example::

    Pe = 1.0,         Q =  0
    Pe = 0.1,         Q = 10
    Pe = 0.01,        Q = 20
    ...
    Pe = 0.00000001,  Q = 80
    Pe = 0.000000001, Q = 90

In typical raw sequence reads, the PHRED quality valuea will be from 0 to 40.
In the QUAL format these quality values are held as space separated text in
a FASTA like file format.  In the FASTQ format, each quality values is encoded
with a single ASCI character using chr(Q+33), meaning zero maps to the
character "!" and for example 80 maps to "q".  For the Sanger FASTQ standard
the allowed range of PHRED scores is 0 to 93 inclusive. The sequences and
quality are then stored in pairs in a FASTA like format.

Unfortunately there is no official document describing the FASTQ file format,
and worse, several related but different variants exist. For more details,
please read this open access publication::

    The Sanger FASTQ file format for sequences with quality scores, and the
    Solexa/Illumina FASTQ variants.
    P.J.A.Cock (Biopython), C.J.Fields (BioPerl), N.Goto (BioRuby),
    M.L.Heuer (BioJava) and P.M. Rice (EMBOSS).
    Nucleic Acids Research 2010 38(6):1767-1771
    https://doi.org/10.1093/nar/gkp1137

The good news is that Roche 454 sequencers can output files in the QUAL format,
and sensibly they use PHREP style scores like Sanger.  Converting a pair of
FASTA and QUAL files into a Sanger style FASTQ file is easy. To extract QUAL
files from a Roche 454 SFF binary file, use the Roche off instrument command
line tool "sffinfo" with the -q or -qual argument.  You can extract a matching
FASTA file using the -s or -seq argument instead.

The bad news is that Solexa/Illumina did things differently - they have their
own scoring system AND their own incompatible versions of the FASTQ format.
Solexa/Illumina quality scores use Q = - 10 log10 ( Pe / (1-Pe) ), which can
be negative.  PHRED scores and Solexa scores are NOT interchangeable (but a
reasonable mapping can be achieved between them, and they are approximately
equal for higher quality reads).

Confusingly early Solexa pipelines produced a FASTQ like file but using their
own score mapping and an ASCII offset of 64. To make things worse, for the
Solexa/Illumina pipeline 1.3 onwards, they introduced a third variant of the
FASTQ file format, this time using PHRED scores (which is more consistent) but
with an ASCII offset of 64.

i.e. There are at least THREE different and INCOMPATIBLE variants of the FASTQ
file format: The original Sanger PHRED standard, and two from Solexa/Illumina.

The good news is that as of CASAVA version 1.8, Illumina sequencers will
produce FASTQ files using the standard Sanger encoding.

You are expected to use this module via the Bio.SeqIO functions, with the
following format names:

    - "qual" means simple quality files using PHRED scores (e.g. from Roche 454)
    - "fastq" means Sanger style FASTQ files using PHRED scores and an ASCII
      offset of 33 (e.g. from the NCBI Short Read Archive and Illumina 1.8+).
      These can potentially hold PHRED scores from 0 to 93.
    - "fastq-sanger" is an alias for "fastq".
    - "fastq-solexa" means old Solexa (and also very early Illumina) style FASTQ
      files, using Solexa scores with an ASCII offset 64. These can hold Solexa
      scores from -5 to 62.
    - "fastq-illumina" means newer Illumina 1.3 to 1.7 style FASTQ files, using
      PHRED scores but with an ASCII offset 64, allowing PHRED scores from 0
      to 62.

We could potentially add support for "qual-solexa" meaning QUAL files which
contain Solexa scores, but thus far there isn't any reason to use such files.

For example, consider the following short FASTQ file::

    @EAS54_6_R1_2_1_413_324
    CCCTTCTTGTCTTCAGCGTTTCTCC
    +
    ;;3;;;;;;;;;;;;7;;;;;;;88
    @EAS54_6_R1_2_1_540_792
    TTGGCAGGCCAAGGCCGATGGATCA
    +
    ;;;;;;;;;;;7;;;;;-;;;3;83
    @EAS54_6_R1_2_1_443_348
    GTTGCTTCTGGCGTGGGTGGGGGGG
    +
    ;;;;;;;;;;;9;7;;.7;393333

This contains three reads of length 25.  From the read length these were
probably originally from an early Solexa/Illumina sequencer but this file
follows the Sanger FASTQ convention (PHRED style qualities with an ASCII
offset of 33).  This means we can parse this file using Bio.SeqIO using
"fastq" as the format name:

>>> from Bio import SeqIO
>>> for record in SeqIO.parse("Quality/example.fastq", "fastq"):
...     print("%s %s" % (record.id, record.seq))
EAS54_6_R1_2_1_413_324 CCCTTCTTGTCTTCAGCGTTTCTCC
EAS54_6_R1_2_1_540_792 TTGGCAGGCCAAGGCCGATGGATCA
EAS54_6_R1_2_1_443_348 GTTGCTTCTGGCGTGGGTGGGGGGG

The qualities are held as a list of integers in each record's annotation:

>>> print(record)
ID: EAS54_6_R1_2_1_443_348
Name: EAS54_6_R1_2_1_443_348
Description: EAS54_6_R1_2_1_443_348
Number of features: 0
Per letter annotation for: phred_quality
Seq('GTTGCTTCTGGCGTGGGTGGGGGGG')
>>> print(record.letter_annotations["phred_quality"])
[26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 24, 26, 22, 26, 26, 13, 22, 26, 18, 24, 18, 18, 18, 18]

You can use the SeqRecord format method to show this in the QUAL format:

>>> print(record.format("qual"))
>EAS54_6_R1_2_1_443_348
26 26 26 26 26 26 26 26 26 26 26 24 26 22 26 26 13 22 26 18
24 18 18 18 18
<BLANKLINE>

Or go back to the FASTQ format, use "fastq" (or "fastq-sanger"):

>>> print(record.format("fastq"))
@EAS54_6_R1_2_1_443_348
GTTGCTTCTGGCGTGGGTGGGGGGG
+
;;;;;;;;;;;9;7;;.7;393333
<BLANKLINE>

Or, using the Illumina 1.3+ FASTQ encoding (PHRED values with an ASCII offset
of 64):

>>> print(record.format("fastq-illumina"))
@EAS54_6_R1_2_1_443_348
GTTGCTTCTGGCGTGGGTGGGGGGG
+
ZZZZZZZZZZZXZVZZMVZRXRRRR
<BLANKLINE>

You can also get Biopython to convert the scores and show a Solexa style
FASTQ file:

>>> print(record.format("fastq-solexa"))
@EAS54_6_R1_2_1_443_348
GTTGCTTCTGGCGTGGGTGGGGGGG
+
ZZZZZZZZZZZXZVZZMVZRXRRRR
<BLANKLINE>

Notice that this is actually the same output as above using "fastq-illumina"
as the format! The reason for this is all these scores are high enough that
the PHRED and Solexa scores are almost equal. The differences become apparent
for poor quality reads. See the functions solexa_quality_from_phred and
phred_quality_from_solexa for more details.

If you wanted to trim your sequences (perhaps to remove low quality regions,
or to remove a primer sequence), try slicing the SeqRecord objects.  e.g.

>>> sub_rec = record[5:15]
>>> print(sub_rec)
ID: EAS54_6_R1_2_1_443_348
Name: EAS54_6_R1_2_1_443_348
Description: EAS54_6_R1_2_1_443_348
Number of features: 0
Per letter annotation for: phred_quality
Seq('TTCTGGCGTG')
>>> print(sub_rec.letter_annotations["phred_quality"])
[26, 26, 26, 26, 26, 26, 24, 26, 22, 26]
>>> print(sub_rec.format("fastq"))
@EAS54_6_R1_2_1_443_348
TTCTGGCGTG
+
;;;;;;9;7;
<BLANKLINE>

If you wanted to, you could read in this FASTQ file, and save it as a QUAL file:

>>> from Bio import SeqIO
>>> record_iterator = SeqIO.parse("Quality/example.fastq", "fastq")
>>> with open("Quality/temp.qual", "w") as out_handle:
...     SeqIO.write(record_iterator, out_handle, "qual")
3

You can of course read in a QUAL file, such as the one we just created:

>>> from Bio import SeqIO
>>> for record in SeqIO.parse("Quality/temp.qual", "qual"):
...     print("%s read of length %d" % (record.id, len(record.seq)))
EAS54_6_R1_2_1_413_324 read of length 25
EAS54_6_R1_2_1_540_792 read of length 25
EAS54_6_R1_2_1_443_348 read of length 25

Notice that QUAL files don't have a proper sequence present!  But the quality
information is there:

>>> print(record)
ID: EAS54_6_R1_2_1_443_348
Name: EAS54_6_R1_2_1_443_348
Description: EAS54_6_R1_2_1_443_348
Number of features: 0
Per letter annotation for: phred_quality
Undefined sequence of length 25
>>> print(record.letter_annotations["phred_quality"])
[26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 24, 26, 22, 26, 26, 13, 22, 26, 18, 24, 18, 18, 18, 18]

Just to keep things tidy, if you are following this example yourself, you can
delete this temporary file now:

>>> import os
>>> os.remove("Quality/temp.qual")

Sometimes you won't have a FASTQ file, but rather just a pair of FASTA and QUAL
files.  Because the Bio.SeqIO system is designed for reading single files, you
would have to read the two in separately and then combine the data.  However,
since this is such a common thing to want to do, there is a helper iterator
defined in this module that does this for you - PairedFastaQualIterator.

Alternatively, if you have enough RAM to hold all the records in memory at once,
then a simple dictionary approach would work:

>>> from Bio import SeqIO
>>> reads = SeqIO.to_dict(SeqIO.parse("Quality/example.fasta", "fasta"))
>>> for rec in SeqIO.parse("Quality/example.qual", "qual"):
...     reads[rec.id].letter_annotations["phred_quality"]=rec.letter_annotations["phred_quality"]

You can then access any record by its key, and get both the sequence and the
quality scores.

>>> print(reads["EAS54_6_R1_2_1_540_792"].format("fastq"))
@EAS54_6_R1_2_1_540_792
TTGGCAGGCCAAGGCCGATGGATCA
+
;;;;;;;;;;;7;;;;;-;;;3;83
<BLANKLINE>

It is important that you explicitly tell Bio.SeqIO which FASTQ variant you are
using ("fastq" or "fastq-sanger" for the Sanger standard using PHRED values,
"fastq-solexa" for the original Solexa/Illumina variant, or "fastq-illumina"
for the more recent variant), as this cannot be detected reliably
automatically.

To illustrate this problem, let's consider an artificial example:

>>> from Bio.Seq import Seq
>>> from Bio.SeqRecord import SeqRecord
>>> test = SeqRecord(Seq("NACGTACGTA"), id="Test", description="Made up!")
>>> print(test.format("fasta"))
>Test Made up!
NACGTACGTA
<BLANKLINE>
>>> print(test.format("fastq"))
Traceback (most recent call last):
 ...
ValueError: No suitable quality scores found in letter_annotations of SeqRecord (id=Test).

We created a sample SeqRecord, and can show it in FASTA format - but for QUAL
or FASTQ format we need to provide some quality scores. These are held as a
list of integers (one for each base) in the letter_annotations dictionary:

>>> test.letter_annotations["phred_quality"] = [0, 1, 2, 3, 4, 5, 10, 20, 30, 40]
>>> print(test.format("qual"))
>Test Made up!
0 1 2 3 4 5 10 20 30 40
<BLANKLINE>
>>> print(test.format("fastq"))
@Test Made up!
NACGTACGTA
+
!"#$%&+5?I
<BLANKLINE>

We can check this FASTQ encoding - the first PHRED quality was zero, and this
mapped to a exclamation mark, while the final score was 40 and this mapped to
the letter "I":

>>> ord('!') - 33
0
>>> ord('I') - 33
40
>>> [ord(letter)-33 for letter in '!"#$%&+5?I']
[0, 1, 2, 3, 4, 5, 10, 20, 30, 40]

Similarly, we could produce an Illumina 1.3 to 1.7 style FASTQ file using PHRED
scores with an offset of 64:

>>> print(test.format("fastq-illumina"))
@Test Made up!
NACGTACGTA
+
@ABCDEJT^h
<BLANKLINE>

And we can check this too - the first PHRED score was zero, and this mapped to
"@", while the final score was 40 and this mapped to "h":

>>> ord("@") - 64
0
>>> ord("h") - 64
40
>>> [ord(letter)-64 for letter in "@ABCDEJT^h"]
[0, 1, 2, 3, 4, 5, 10, 20, 30, 40]

Notice how different the standard Sanger FASTQ and the Illumina 1.3 to 1.7 style
FASTQ files look for the same data! Then we have the older Solexa/Illumina
format to consider which encodes Solexa scores instead of PHRED scores.

First let's see what Biopython says if we convert the PHRED scores into Solexa
scores (rounding to one decimal place):

>>> for q in [0, 1, 2, 3, 4, 5, 10, 20, 30, 40]:
...     print("PHRED %i maps to Solexa %0.1f" % (q, solexa_quality_from_phred(q)))
PHRED 0 maps to Solexa -5.0
PHRED 1 maps to Solexa -5.0
PHRED 2 maps to Solexa -2.3
PHRED 3 maps to Solexa -0.0
PHRED 4 maps to Solexa 1.8
PHRED 5 maps to Solexa 3.3
PHRED 10 maps to Solexa 9.5
PHRED 20 maps to Solexa 20.0
PHRED 30 maps to Solexa 30.0
PHRED 40 maps to Solexa 40.0

Now here is the record using the old Solexa style FASTQ file:

>>> print(test.format("fastq-solexa"))
@Test Made up!
NACGTACGTA
+
;;>@BCJT^h
<BLANKLINE>

Again, this is using an ASCII offset of 64, so we can check the Solexa scores:

>>> [ord(letter)-64 for letter in ";;>@BCJT^h"]
[-5, -5, -2, 0, 2, 3, 10, 20, 30, 40]

This explains why the last few letters of this FASTQ output matched that using
the Illumina 1.3 to 1.7 format - high quality PHRED scores and Solexa scores
are approximately equal.

"""
import warnings

from math import log

from Bio import BiopythonParserWarning
from Bio import BiopythonWarning
from Bio import BiopythonDeprecationWarning
from Bio import StreamModeError
from Bio.File import as_handle
from Bio.Seq import Seq
from Bio.SeqRecord import SeqRecord

from .Interfaces import _clean
from .Interfaces import _get_seq_string
from .Interfaces import SequenceIterator
from .Interfaces import SequenceWriter


# define score offsets. See discussion for differences between Sanger and
# Solexa offsets.
SANGER_SCORE_OFFSET = 33
SOLEXA_SCORE_OFFSET = 64


def solexa_quality_from_phred(phred_quality):
    """Convert a PHRED quality (range 0 to about 90) to a Solexa quality.

    PHRED and Solexa quality scores are both log transformations of a
    probality of error (high score = low probability of error). This function
    takes a PHRED score, transforms it back to a probability of error, and
    then re-expresses it as a Solexa score. This assumes the error estimates
    are equivalent.

    How does this work exactly? Well the PHRED quality is minus ten times the
    base ten logarithm of the probability of error::

        phred_quality = -10*log(error,10)

    Therefore, turning this round::

        error = 10 ** (- phred_quality / 10)

    Now, Solexa qualities use a different log transformation::

        solexa_quality = -10*log(error/(1-error),10)

    After substitution and a little manipulation we get::

         solexa_quality = 10*log(10**(phred_quality/10.0) - 1, 10)

    However, real Solexa files use a minimum quality of -5. This does have a
    good reason - a random base call would be correct 25% of the time,
    and thus have a probability of error of 0.75, which gives 1.25 as the PHRED
    quality, or -4.77 as the Solexa quality. Thus (after rounding), a random
    nucleotide read would have a PHRED quality of 1, or a Solexa quality of -5.

    Taken literally, this logarithic formula would map a PHRED quality of zero
    to a Solexa quality of minus infinity. Of course, taken literally, a PHRED
    score of zero means a probability of error of one (i.e. the base call is
    definitely wrong), which is worse than random! In practice, a PHRED quality
    of zero usually means a default value, or perhaps random - and therefore
    mapping it to the minimum Solexa score of -5 is reasonable.

    In conclusion, we follow EMBOSS, and take this logarithmic formula but also
    apply a minimum value of -5.0 for the Solexa quality, and also map a PHRED
    quality of zero to -5.0 as well.

    Note this function will return a floating point number, it is up to you to
    round this to the nearest integer if appropriate.  e.g.

    >>> print("%0.2f" % round(solexa_quality_from_phred(80), 2))
    80.00
    >>> print("%0.2f" % round(solexa_quality_from_phred(50), 2))
    50.00
    >>> print("%0.2f" % round(solexa_quality_from_phred(20), 2))
    19.96
    >>> print("%0.2f" % round(solexa_quality_from_phred(10), 2))
    9.54
    >>> print("%0.2f" % round(solexa_quality_from_phred(5), 2))
    3.35
    >>> print("%0.2f" % round(solexa_quality_from_phred(4), 2))
    1.80
    >>> print("%0.2f" % round(solexa_quality_from_phred(3), 2))
    -0.02
    >>> print("%0.2f" % round(solexa_quality_from_phred(2), 2))
    -2.33
    >>> print("%0.2f" % round(solexa_quality_from_phred(1), 2))
    -5.00
    >>> print("%0.2f" % round(solexa_quality_from_phred(0), 2))
    -5.00

    Notice that for high quality reads PHRED and Solexa scores are numerically
    equal. The differences are important for poor quality reads, where PHRED
    has a minimum of zero but Solexa scores can be negative.

    Finally, as a special case where None is used for a "missing value", None
    is returned:

    >>> print(solexa_quality_from_phred(None))
    None
    """
    if phred_quality is None:
        # Assume None is used as some kind of NULL or NA value; return None
        # e.g. Bio.SeqIO gives Ace contig gaps a quality of None.
        return None
    elif phred_quality > 0:
        # Solexa uses a minimum value of -5, which after rounding matches a
        # random nucleotide base call.
        return max(-5.0, 10 * log(10 ** (phred_quality / 10.0) - 1, 10))
    elif phred_quality == 0:
        # Special case, map to -5 as discussed in the docstring
        return -5.0
    else:
        raise ValueError(
            f"PHRED qualities must be positive (or zero), not {phred_quality!r}"
        )


def phred_quality_from_solexa(solexa_quality):
    """Convert a Solexa quality (which can be negative) to a PHRED quality.

    PHRED and Solexa quality scores are both log transformations of a
    probality of error (high score = low probability of error). This function
    takes a Solexa score, transforms it back to a probability of error, and
    then re-expresses it as a PHRED score. This assumes the error estimates
    are equivalent.

    The underlying formulas are given in the documentation for the sister
    function solexa_quality_from_phred, in this case the operation is::

        phred_quality = 10*log(10**(solexa_quality/10.0) + 1, 10)

    This will return a floating point number, it is up to you to round this to
    the nearest integer if appropriate.  e.g.

    >>> print("%0.2f" % round(phred_quality_from_solexa(80), 2))
    80.00
    >>> print("%0.2f" % round(phred_quality_from_solexa(20), 2))
    20.04
    >>> print("%0.2f" % round(phred_quality_from_solexa(10), 2))
    10.41
    >>> print("%0.2f" % round(phred_quality_from_solexa(0), 2))
    3.01
    >>> print("%0.2f" % round(phred_quality_from_solexa(-5), 2))
    1.19

    Note that a solexa_quality less then -5 is not expected, will trigger a
    warning, but will still be converted as per the logarithmic mapping
    (giving a number between 0 and 1.19 back).

    As a special case where None is used for a "missing value", None is
    returned:

    >>> print(phred_quality_from_solexa(None))
    None
    """
    if solexa_quality is None:
        # Assume None is used as some kind of NULL or NA value; return None
        return None
    if solexa_quality < -5:
        warnings.warn(
            f"Solexa quality less than -5 passed, {solexa_quality!r}", BiopythonWarning
        )
    return 10 * log(10 ** (solexa_quality / 10.0) + 1, 10)


def _get_phred_quality(record):
    """Extract PHRED qualities from a SeqRecord's letter_annotations (PRIVATE).

    If there are no PHRED qualities, but there are Solexa qualities, those are
    used instead after conversion.
    """
    try:
        return record.letter_annotations["phred_quality"]
    except KeyError:
        pass
    try:
        return [
            phred_quality_from_solexa(q)
            for q in record.letter_annotations["solexa_quality"]
        ]
    except KeyError:
        raise ValueError(
            "No suitable quality scores found in "
            "letter_annotations of SeqRecord (id=%s)." % record.id
        ) from None


# Only map 0 to 93, we need to give a warning on truncating at 93
_phred_to_sanger_quality_str = {
    qp: chr(min(126, qp + SANGER_SCORE_OFFSET)) for qp in range(0, 93 + 1)
}
# Only map -5 to 93, we need to give a warning on truncating at 93
_solexa_to_sanger_quality_str = {
    qs: chr(min(126, int(round(phred_quality_from_solexa(qs)) + SANGER_SCORE_OFFSET)))
    for qs in range(-5, 93 + 1)
}


def _get_sanger_quality_str(record):
    """Return a Sanger FASTQ encoded quality string (PRIVATE).

    >>> from Bio.Seq import Seq
    >>> from Bio.SeqRecord import SeqRecord
    >>> r = SeqRecord(Seq("ACGTAN"), id="Test",
    ...               letter_annotations = {"phred_quality":[50, 40, 30, 20, 10, 0]})
    >>> _get_sanger_quality_str(r)
    'SI?5+!'

    If as in the above example (or indeed a SeqRecord parser with Bio.SeqIO),
    the PHRED qualities are integers, this function is able to use a very fast
    pre-cached mapping. However, if they are floats which differ slightly, then
    it has to do the appropriate rounding - which is slower:

    >>> r2 = SeqRecord(Seq("ACGTAN"), id="Test2",
    ...      letter_annotations = {"phred_quality":[50.0, 40.05, 29.99, 20, 9.55, 0.01]})
    >>> _get_sanger_quality_str(r2)
    'SI?5+!'

    If your scores include a None value, this raises an exception:

    >>> r3 = SeqRecord(Seq("ACGTAN"), id="Test3",
    ...               letter_annotations = {"phred_quality":[50, 40, 30, 20, 10, None]})
    >>> _get_sanger_quality_str(r3)
    Traceback (most recent call last):
       ...
    TypeError: A quality value of None was found

    If (strangely) your record has both PHRED and Solexa scores, then the PHRED
    scores are used in preference:

    >>> r4 = SeqRecord(Seq("ACGTAN"), id="Test4",
    ...               letter_annotations = {"phred_quality":[50, 40, 30, 20, 10, 0],
    ...                                     "solexa_quality":[-5, -4, 0, None, 0, 40]})
    >>> _get_sanger_quality_str(r4)
    'SI?5+!'

    If there are no PHRED scores, but there are Solexa scores, these are used
    instead (after the appropriate conversion):

    >>> r5 = SeqRecord(Seq("ACGTAN"), id="Test5",
    ...      letter_annotations = {"solexa_quality":[40, 30, 20, 10, 0, -5]})
    >>> _get_sanger_quality_str(r5)
    'I?5+$"'

    Again, integer Solexa scores can be looked up in a pre-cached mapping making
    this very fast. You can still use approximate floating point scores:

    >>> r6 = SeqRecord(Seq("ACGTAN"), id="Test6",
    ...      letter_annotations = {"solexa_quality":[40.1, 29.7, 20.01, 10, 0.0, -4.9]})
    >>> _get_sanger_quality_str(r6)
    'I?5+$"'

    Notice that due to the limited range of printable ASCII characters, a
    PHRED quality of 93 is the maximum that can be held in an Illumina FASTQ
    file (using ASCII 126, the tilde). This function will issue a warning
    in this situation.
    """
    # TODO - This functions works and is fast, but it is also ugly
    # and there is considerable repetition of code for the other
    # two FASTQ variants.
    try:
        # These take priority (in case both Solexa and PHRED scores found)
        qualities = record.letter_annotations["phred_quality"]
    except KeyError:
        # Fall back on solexa scores...
        pass
    else:
        # Try and use the precomputed mapping:
        try:
            return "".join(_phred_to_sanger_quality_str[qp] for qp in qualities)
        except KeyError:
            # Could be a float, or a None in the list, or a high value.
            pass
        if None in qualities:
            raise TypeError("A quality value of None was found")
        if max(qualities) >= 93.5:
            warnings.warn(
                "Data loss - max PHRED quality 93 in Sanger FASTQ", BiopythonWarning
            )
        # This will apply the truncation at 93, giving max ASCII 126
        return "".join(
            chr(min(126, int(round(qp)) + SANGER_SCORE_OFFSET)) for qp in qualities
        )
    # Fall back on the Solexa scores...
    try:
        qualities = record.letter_annotations["solexa_quality"]
    except KeyError:
        raise ValueError(
            "No suitable quality scores found in "
            "letter_annotations of SeqRecord (id=%s)." % record.id
        ) from None
    # Try and use the precomputed mapping:
    try:
        return "".join(_solexa_to_sanger_quality_str[qs] for qs in qualities)
    except KeyError:
        # Either no PHRED scores, or something odd like a float or None
        pass
    if None in qualities:
        raise TypeError("A quality value of None was found")
    # Must do this the slow way, first converting the PHRED scores into
    # Solexa scores:
    if max(qualities) >= 93.5:
        warnings.warn(
            "Data loss - max PHRED quality 93 in Sanger FASTQ", BiopythonWarning
        )
    # This will apply the truncation at 93, giving max ASCII 126
    return "".join(
        chr(min(126, int(round(phred_quality_from_solexa(qs))) + SANGER_SCORE_OFFSET))
        for qs in qualities
    )


# Only map 0 to 62, we need to give a warning on truncating at 62
assert 62 + SOLEXA_SCORE_OFFSET == 126
_phred_to_illumina_quality_str = {
    qp: chr(qp + SOLEXA_SCORE_OFFSET) for qp in range(0, 62 + 1)
}
# Only map -5 to 62, we need to give a warning on truncating at 62
_solexa_to_illumina_quality_str = {
    qs: chr(int(round(phred_quality_from_solexa(qs))) + SOLEXA_SCORE_OFFSET)
    for qs in range(-5, 62 + 1)
}


def _get_illumina_quality_str(record):
    """Return an Illumina 1.3 to 1.7 FASTQ encoded quality string (PRIVATE).

    Notice that due to the limited range of printable ASCII characters, a
    PHRED quality of 62 is the maximum that can be held in an Illumina FASTQ
    file (using ASCII 126, the tilde). This function will issue a warning
    in this situation.
    """
    # TODO - This functions works and is fast, but it is also ugly
    # and there is considerable repetition of code for the other
    # two FASTQ variants.
    try:
        # These take priority (in case both Solexa and PHRED scores found)
        qualities = record.letter_annotations["phred_quality"]
    except KeyError:
        # Fall back on solexa scores...
        pass
    else:
        # Try and use the precomputed mapping:
        try:
            return "".join(_phred_to_illumina_quality_str[qp] for qp in qualities)
        except KeyError:
            # Could be a float, or a None in the list, or a high value.
            pass
        if None in qualities:
            raise TypeError("A quality value of None was found")
        if max(qualities) >= 62.5:
            warnings.warn(
                "Data loss - max PHRED quality 62 in Illumina FASTQ", BiopythonWarning
            )
        # This will apply the truncation at 62, giving max ASCII 126
        return "".join(
            chr(min(126, int(round(qp)) + SOLEXA_SCORE_OFFSET)) for qp in qualities
        )
    # Fall back on the Solexa scores...
    try:
        qualities = record.letter_annotations["solexa_quality"]
    except KeyError:
        raise ValueError(
            "No suitable quality scores found in "
            "letter_annotations of SeqRecord (id=%s)." % record.id
        ) from None
    # Try and use the precomputed mapping:
    try:
        return "".join(_solexa_to_illumina_quality_str[qs] for qs in qualities)
    except KeyError:
        # Either no PHRED scores, or something odd like a float or None
        pass
    if None in qualities:
        raise TypeError("A quality value of None was found")
    # Must do this the slow way, first converting the PHRED scores into
    # Solexa scores:
    if max(qualities) >= 62.5:
        warnings.warn(
            "Data loss - max PHRED quality 62 in Illumina FASTQ", BiopythonWarning
        )
    # This will apply the truncation at 62, giving max ASCII 126
    return "".join(
        chr(min(126, int(round(phred_quality_from_solexa(qs))) + SOLEXA_SCORE_OFFSET))
        for qs in qualities
    )


# Only map 0 to 62, we need to give a warning on truncating at 62
assert 62 + SOLEXA_SCORE_OFFSET == 126
_solexa_to_solexa_quality_str = {
    qs: chr(min(126, qs + SOLEXA_SCORE_OFFSET)) for qs in range(-5, 62 + 1)
}
# Only map -5 to 62, we need to give a warning on truncating at 62
_phred_to_solexa_quality_str = {
    qp: chr(min(126, int(round(solexa_quality_from_phred(qp))) + SOLEXA_SCORE_OFFSET))
    for qp in range(0, 62 + 1)
}


def _get_solexa_quality_str(record):
    """Return a Solexa FASTQ encoded quality string (PRIVATE).

    Notice that due to the limited range of printable ASCII characters, a
    Solexa quality of 62 is the maximum that can be held in a Solexa FASTQ
    file (using ASCII 126, the tilde). This function will issue a warning
    in this situation.
    """
    # TODO - This functions works and is fast, but it is also ugly
    # and there is considerable repetition of code for the other
    # two FASTQ variants.
    try:
        # These take priority (in case both Solexa and PHRED scores found)
        qualities = record.letter_annotations["solexa_quality"]
    except KeyError:
        # Fall back on PHRED scores...
        pass
    else:
        # Try and use the precomputed mapping:
        try:
            return "".join(_solexa_to_solexa_quality_str[qs] for qs in qualities)
        except KeyError:
            # Could be a float, or a None in the list, or a high value.
            pass
        if None in qualities:
            raise TypeError("A quality value of None was found")
        if max(qualities) >= 62.5:
            warnings.warn(
                "Data loss - max Solexa quality 62 in Solexa FASTQ", BiopythonWarning
            )
        # This will apply the truncation at 62, giving max ASCII 126
        return "".join(
            chr(min(126, int(round(qs)) + SOLEXA_SCORE_OFFSET)) for qs in qualities
        )
    # Fall back on the PHRED scores...
    try:
        qualities = record.letter_annotations["phred_quality"]
    except KeyError:
        raise ValueError(
            "No suitable quality scores found in "
            "letter_annotations of SeqRecord (id=%s)." % record.id
        ) from None
    # Try and use the precomputed mapping:
    try:
        return "".join(_phred_to_solexa_quality_str[qp] for qp in qualities)
    except KeyError:
        # Either no PHRED scores, or something odd like a float or None
        # or too big to be in the cache
        pass
    if None in qualities:
        raise TypeError("A quality value of None was found")
    # Must do this the slow way, first converting the PHRED scores into
    # Solexa scores:
    if max(qualities) >= 62.5:
        warnings.warn(
            "Data loss - max Solexa quality 62 in Solexa FASTQ", BiopythonWarning
        )
    return "".join(
        chr(min(126, int(round(solexa_quality_from_phred(qp))) + SOLEXA_SCORE_OFFSET))
        for qp in qualities
    )


# TODO - Default to nucleotide or even DNA?
def FastqGeneralIterator(source):
    """Iterate over Fastq records as string tuples (not as SeqRecord objects).

    Arguments:
     - source - input stream opened in text mode, or a path to a file

    This code does not try to interpret the quality string numerically.  It
    just returns tuples of the title, sequence and quality as strings.  For
    the sequence and quality, any whitespace (such as new lines) is removed.

    Our SeqRecord based FASTQ iterators call this function internally, and then
    turn the strings into a SeqRecord objects, mapping the quality string into
    a list of numerical scores.  If you want to do a custom quality mapping,
    then you might consider calling this function directly.

    For parsing FASTQ files, the title string from the "@" line at the start
    of each record can optionally be omitted on the "+" lines.  If it is
    repeated, it must be identical.

    The sequence string and the quality string can optionally be split over
    multiple lines, although several sources discourage this.  In comparison,
    for the FASTA file format line breaks between 60 and 80 characters are
    the norm.

    **WARNING** - Because the "@" character can appear in the quality string,
    this can cause problems as this is also the marker for the start of
    a new sequence.  In fact, the "+" sign can also appear as well.  Some
    sources recommended having no line breaks in the  quality to avoid this,
    but even that is not enough, consider this example::

        @071113_EAS56_0053:1:1:998:236
        TTTCTTGCCCCCATAGACTGAGACCTTCCCTAAATA
        +071113_EAS56_0053:1:1:998:236
        IIIIIIIIIIIIIIIIIIIIIIIIIIIIICII+III
        @071113_EAS56_0053:1:1:182:712
        ACCCAGCTAATTTTTGTATTTTTGTTAGAGACAGTG
        +
        @IIIIIIIIIIIIIIICDIIIII<%<6&-*).(*%+
        @071113_EAS56_0053:1:1:153:10
        TGTTCTGAAGGAAGGTGTGCGTGCGTGTGTGTGTGT
        +
        IIIIIIIIIIIICIIGIIIII>IAIIIE65I=II:6
        @071113_EAS56_0053:1:3:990:501
        TGGGAGGTTTTATGTGGA
        AAGCAGCAATGTACAAGA
        +
        IIIIIII.IIIIII1@44
        @-7.%<&+/$/%4(++(%

    This is four PHRED encoded FASTQ entries originally from an NCBI source
    (given the read length of 36, these are probably Solexa Illumina reads where
    the quality has been mapped onto the PHRED values).

    This example has been edited to illustrate some of the nasty things allowed
    in the FASTQ format.  Firstly, on the "+" lines most but not all of the
    (redundant) identifiers are omitted.  In real files it is likely that all or
    none of these extra identifiers will be present.

    Secondly, while the first three sequences have been shown without line
    breaks, the last has been split over multiple lines.  In real files any line
    breaks are likely to be consistent.

    Thirdly, some of the quality string lines start with an "@" character.  For
    the second record this is unavoidable.  However for the fourth sequence this
    only happens because its quality string is split over two lines.  A naive
    parser could wrongly treat any line starting with an "@" as the beginning of
    a new sequence!  This code copes with this possible ambiguity by keeping
    track of the length of the sequence which gives the expected length of the
    quality string.

    Using this tricky example file as input, this short bit of code demonstrates
    what this parsing function would return:

    >>> with open("Quality/tricky.fastq") as handle:
    ...     for (title, sequence, quality) in FastqGeneralIterator(handle):
    ...         print(title)
    ...         print("%s %s" % (sequence, quality))
    ...
    071113_EAS56_0053:1:1:998:236
    TTTCTTGCCCCCATAGACTGAGACCTTCCCTAAATA IIIIIIIIIIIIIIIIIIIIIIIIIIIIICII+III
    071113_EAS56_0053:1:1:182:712
    ACCCAGCTAATTTTTGTATTTTTGTTAGAGACAGTG @IIIIIIIIIIIIIIICDIIIII<%<6&-*).(*%+
    071113_EAS56_0053:1:1:153:10
    TGTTCTGAAGGAAGGTGTGCGTGCGTGTGTGTGTGT IIIIIIIIIIIICIIGIIIII>IAIIIE65I=II:6
    071113_EAS56_0053:1:3:990:501
    TGGGAGGTTTTATGTGGAAAGCAGCAATGTACAAGA IIIIIII.IIIIII1@44@-7.%<&+/$/%4(++(%

    Finally we note that some sources state that the quality string should
    start with "!" (which using the PHRED mapping means the first letter always
    has a quality score of zero).  This rather restrictive rule is not widely
    observed, so is therefore ignored here.  One plus point about this "!" rule
    is that (provided there are no line breaks in the quality sequence) it
    would prevent the above problem with the "@" character.
    """
    try:
        handle = open(source)
    except TypeError:
        handle = source
        if handle.read(0) != "":
            raise StreamModeError("Fastq files must be opened in text mode") from None
    try:
        try:
            line = next(handle)
        except StopIteration:
            return  # Premature end of file, or just empty?

        while True:
            if line[0] != "@":
                raise ValueError(
                    "Records in Fastq files should start with '@' character"
                )
            title_line = line[1:].rstrip()
            seq_string = ""
            # There will now be one or more sequence lines; keep going until we
            # find the "+" marking the quality line:
            for line in handle:
                if line[0] == "+":
                    break
                seq_string += line.rstrip()
            else:
                if seq_string:
                    raise ValueError("End of file without quality information.")
                else:
                    raise ValueError("Unexpected end of file")
            # The title here is optional, but if present must match!
            second_title = line[1:].rstrip()
            if second_title and second_title != title_line:
                raise ValueError("Sequence and quality captions differ.")
            # This is going to slow things down a little, but assuming
            # this isn't allowed we should try and catch it here:
            if " " in seq_string or "\t" in seq_string:
                raise ValueError("Whitespace is not allowed in the sequence.")
            seq_len = len(seq_string)

            # There will now be at least one line of quality data, followed by
            # another sequence, or EOF
            line = None
            quality_string = ""
            for line in handle:
                if line[0] == "@":
                    # This COULD be the start of a new sequence. However, it MAY just
                    # be a line of quality data which starts with a "@" character.  We
                    # should be able to check this by looking at the sequence length
                    # and the amount of quality data found so far.
                    if len(quality_string) >= seq_len:
                        # We expect it to be equal if this is the start of a new record.
                        # If the quality data is longer, we'll raise an error below.
                        break
                    # Continue - its just some (more) quality data.
                quality_string += line.rstrip()
            else:
                if line is None:
                    raise ValueError("Unexpected end of file")
                line = None

            if seq_len != len(quality_string):
                raise ValueError(
                    "Lengths of sequence and quality values differs for %s (%i and %i)."
                    % (title_line, seq_len, len(quality_string))
                )

            # Return the record and then continue...
            yield (title_line, seq_string, quality_string)

            if line is None:
                break
    finally:
        if handle is not source:
            handle.close()


class FastqPhredIterator(SequenceIterator):
    """Parser for FASTQ files."""

    def __init__(self, source, alphabet=None, title2ids=None):
        """Iterate over FASTQ records as SeqRecord objects.

        Arguments:
         - source - input stream opened in text mode, or a path to a file
         - alphabet - optional alphabet, no longer used. Leave as None.
         - title2ids (DEPRECATED) - A function that, when given the title line
           from the FASTQ file (without the beginning >), will return the id,
           name and description (in that order) for the record as a tuple of
           strings.  If this is not given, then the entire title line will be
           used as the description, and the first word as the id and name.

        The use of title2ids matches that of Bio.SeqIO.FastaIO.

        For each sequence in a (Sanger style) FASTQ file there is a matching string
        encoding the PHRED qualities (integers between 0 and about 90) using ASCII
        values with an offset of 33.

        For example, consider a file containing three short reads::

            @EAS54_6_R1_2_1_413_324
            CCCTTCTTGTCTTCAGCGTTTCTCC
            +
            ;;3;;;;;;;;;;;;7;;;;;;;88
            @EAS54_6_R1_2_1_540_792
            TTGGCAGGCCAAGGCCGATGGATCA
            +
            ;;;;;;;;;;;7;;;;;-;;;3;83
            @EAS54_6_R1_2_1_443_348
            GTTGCTTCTGGCGTGGGTGGGGGGG
            +
            ;;;;;;;;;;;9;7;;.7;393333

        For each sequence (e.g. "CCCTTCTTGTCTTCAGCGTTTCTCC") there is a matching
        string encoding the PHRED qualities using a ASCII values with an offset of
        33 (e.g. ";;3;;;;;;;;;;;;7;;;;;;;88").

        Using this module directly you might run:

        >>> with open("Quality/example.fastq") as handle:
        ...     for record in FastqPhredIterator(handle):
        ...         print("%s %s" % (record.id, record.seq))
        EAS54_6_R1_2_1_413_324 CCCTTCTTGTCTTCAGCGTTTCTCC
        EAS54_6_R1_2_1_540_792 TTGGCAGGCCAAGGCCGATGGATCA
        EAS54_6_R1_2_1_443_348 GTTGCTTCTGGCGTGGGTGGGGGGG

        Typically however, you would call this via Bio.SeqIO instead with "fastq"
        (or "fastq-sanger") as the format:

        >>> from Bio import SeqIO
        >>> with open("Quality/example.fastq") as handle:
        ...     for record in SeqIO.parse(handle, "fastq"):
        ...         print("%s %s" % (record.id, record.seq))
        EAS54_6_R1_2_1_413_324 CCCTTCTTGTCTTCAGCGTTTCTCC
        EAS54_6_R1_2_1_540_792 TTGGCAGGCCAAGGCCGATGGATCA
        EAS54_6_R1_2_1_443_348 GTTGCTTCTGGCGTGGGTGGGGGGG

        If you want to look at the qualities, they are record in each record's
        per-letter-annotation dictionary as a simple list of integers:

        >>> print(record.letter_annotations["phred_quality"])
        [26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 24, 26, 22, 26, 26, 13, 22, 26, 18, 24, 18, 18, 18, 18]

        The title2ids argument is deprecated. Instead, please use a generator
        function to modify the records returned by the parser. For example, to
        store the mean PHRED quality in the record description, use

        >>> from statistics import mean
        >>> def modify_records(records):
        ...     for record in records:
        ...         record.description = mean(record.letter_annotations['phred_quality'])
        ...         yield record
        ...
        >>> with open('Quality/example.fastq') as handle:
        ...     for record in modify_records(FastqPhredIterator(handle)):
        ...         print(record.id, record.description)
        ...
        EAS54_6_R1_2_1_413_324 25.28
        EAS54_6_R1_2_1_540_792 24.52
        EAS54_6_R1_2_1_443_348 23.4

        """
        if alphabet is not None:
            raise ValueError("The alphabet argument is no longer supported")
        if title2ids is not None:
            warnings.warn(
                "The title2ids argument is deprecated. Instead, please use a "
                "generator function to modify records returned by the parser. "
                "For example, to change the record description to a counter, "
                "use\n"
                "\n"
                ">>> from statistics import mean\n"
                ">>> def modify_records(records):\n"
                "...     for record in records:\n"
                "...         record.description = mean(record.letter_annotations['phred_quality'])\n"
                "...         yield record\n"
                "...\n"
                ">>> with open('Quality/example.fastq') as handle:\n"
                "...     for record in modify_records(FastqPhredIterator(handle)):\n"
                "...         print(record.id, record.description)\n"
                "\n",
                BiopythonDeprecationWarning,
            )
        self.title2ids = title2ids
        super().__init__(source, mode="t", fmt="Fastq")

    def parse(self, handle):
        """Start parsing the file, and return a SeqRecord generator."""
        records = self.iterate(handle)
        return records

    def iterate(self, handle):
        """Parse the file and generate SeqRecord objects."""
        title2ids = self.title2ids
        assert SANGER_SCORE_OFFSET == ord("!")
        # Originally, I used a list expression for each record:
        #
        # qualities = [ord(letter)-SANGER_SCORE_OFFSET for letter in quality_string]
        #
        # Precomputing is faster, perhaps partly by avoiding the subtractions.
        q_mapping = {
            chr(letter): letter - SANGER_SCORE_OFFSET
            for letter in range(SANGER_SCORE_OFFSET, 94 + SANGER_SCORE_OFFSET)
        }

        for title_line, seq_string, quality_string in FastqGeneralIterator(handle):
            if title2ids:
                id, name, descr = title2ids(title_line)
            else:
                descr = title_line
                id = descr.split()[0]
                name = id
            record = SeqRecord(Seq(seq_string), id=id, name=name, description=descr)
            try:
                qualities = [q_mapping[letter] for letter in quality_string]
            except KeyError:
                raise ValueError("Invalid character in quality string") from None
            # For speed, will now use a dirty trick to speed up assigning the
            # qualities. We do this to bypass the length check imposed by the
            # per-letter-annotations restricted dict (as this has already been
            # checked by FastqGeneralIterator). This is equivalent to:
            # record.letter_annotations["phred_quality"] = qualities
            dict.__setitem__(record._per_letter_annotations, "phred_quality", qualities)
            yield record


def FastqSolexaIterator(source, alphabet=None, title2ids=None):
    r"""Parse old Solexa/Illumina FASTQ like files (which differ in the quality mapping).

    The optional arguments are the same as those for the FastqPhredIterator.

    For each sequence in Solexa/Illumina FASTQ files there is a matching string
    encoding the Solexa integer qualities using ASCII values with an offset
    of 64.  Solexa scores are scaled differently to PHRED scores, and Biopython
    will NOT perform any automatic conversion when loading.

    NOTE - This file format is used by the OLD versions of the Solexa/Illumina
    pipeline. See also the FastqIlluminaIterator function for the NEW version.

    For example, consider a file containing these five records::

        @SLXA-B3_649_FC8437_R1_1_1_610_79
        GATGTGCAATACCTTTGTAGAGGAA
        +SLXA-B3_649_FC8437_R1_1_1_610_79
        YYYYYYYYYYYYYYYYYYWYWYYSU
        @SLXA-B3_649_FC8437_R1_1_1_397_389
        GGTTTGAGAAAGAGAAATGAGATAA
        +SLXA-B3_649_FC8437_R1_1_1_397_389
        YYYYYYYYYWYYYYWWYYYWYWYWW
        @SLXA-B3_649_FC8437_R1_1_1_850_123
        GAGGGTGTTGATCATGATGATGGCG
        +SLXA-B3_649_FC8437_R1_1_1_850_123
        YYYYYYYYYYYYYWYYWYYSYYYSY
        @SLXA-B3_649_FC8437_R1_1_1_362_549
        GGAAACAAAGTTTTTCTCAACATAG
        +SLXA-B3_649_FC8437_R1_1_1_362_549
        YYYYYYYYYYYYYYYYYYWWWWYWY
        @SLXA-B3_649_FC8437_R1_1_1_183_714
        GTATTATTTAATGGCATACACTCAA
        +SLXA-B3_649_FC8437_R1_1_1_183_714
        YYYYYYYYYYWYYYYWYWWUWWWQQ

    Using this module directly you might run:

    >>> with open("Quality/solexa_example.fastq") as handle:
    ...     for record in FastqSolexaIterator(handle):
    ...         print("%s %s" % (record.id, record.seq))
    SLXA-B3_649_FC8437_R1_1_1_610_79 GATGTGCAATACCTTTGTAGAGGAA
    SLXA-B3_649_FC8437_R1_1_1_397_389 GGTTTGAGAAAGAGAAATGAGATAA
    SLXA-B3_649_FC8437_R1_1_1_850_123 GAGGGTGTTGATCATGATGATGGCG
    SLXA-B3_649_FC8437_R1_1_1_362_549 GGAAACAAAGTTTTTCTCAACATAG
    SLXA-B3_649_FC8437_R1_1_1_183_714 GTATTATTTAATGGCATACACTCAA

    Typically however, you would call this via Bio.SeqIO instead with
    "fastq-solexa" as the format:

    >>> from Bio import SeqIO
    >>> with open("Quality/solexa_example.fastq") as handle:
    ...     for record in SeqIO.parse(handle, "fastq-solexa"):
    ...         print("%s %s" % (record.id, record.seq))
    SLXA-B3_649_FC8437_R1_1_1_610_79 GATGTGCAATACCTTTGTAGAGGAA
    SLXA-B3_649_FC8437_R1_1_1_397_389 GGTTTGAGAAAGAGAAATGAGATAA
    SLXA-B3_649_FC8437_R1_1_1_850_123 GAGGGTGTTGATCATGATGATGGCG
    SLXA-B3_649_FC8437_R1_1_1_362_549 GGAAACAAAGTTTTTCTCAACATAG
    SLXA-B3_649_FC8437_R1_1_1_183_714 GTATTATTTAATGGCATACACTCAA

    If you want to look at the qualities, they are recorded in each record's
    per-letter-annotation dictionary as a simple list of integers:

    >>> print(record.letter_annotations["solexa_quality"])
    [25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 23, 25, 25, 25, 25, 23, 25, 23, 23, 21, 23, 23, 23, 17, 17]

    These scores aren't very good, but they are high enough that they map
    almost exactly onto PHRED scores:

    >>> print("%0.2f" % phred_quality_from_solexa(25))
    25.01

    Let's look at faked example read which is even worse, where there are
    more noticeable differences between the Solexa and PHRED scores::

         @slxa_0001_1_0001_01
         ACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTNNNNNN
         +slxa_0001_1_0001_01
         hgfedcba`_^]\[ZYXWVUTSRQPONMLKJIHGFEDCBA@?>=<;

    Again, you would typically use Bio.SeqIO to read this file in (rather than
    calling the Bio.SeqIO.QualtityIO module directly).  Most FASTQ files will
    contain thousands of reads, so you would normally use Bio.SeqIO.parse()
    as shown above.  This example has only as one entry, so instead we can
    use the Bio.SeqIO.read() function:

    >>> from Bio import SeqIO
    >>> with open("Quality/solexa_faked.fastq") as handle:
    ...     record = SeqIO.read(handle, "fastq-solexa")
    >>> print("%s %s" % (record.id, record.seq))
    slxa_0001_1_0001_01 ACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTNNNNNN
    >>> print(record.letter_annotations["solexa_quality"])
    [40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5]

    These quality scores are so low that when converted from the Solexa scheme
    into PHRED scores they look quite different:

    >>> print("%0.2f" % phred_quality_from_solexa(-1))
    2.54
    >>> print("%0.2f" % phred_quality_from_solexa(-5))
    1.19

    Note you can use the Bio.SeqIO.write() function or the SeqRecord's format
    method to output the record(s):

    >>> print(record.format("fastq-solexa"))
    @slxa_0001_1_0001_01
    ACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTNNNNNN
    +
    hgfedcba`_^]\[ZYXWVUTSRQPONMLKJIHGFEDCBA@?>=<;
    <BLANKLINE>

    Note this output is slightly different from the input file as Biopython
    has left out the optional repetition of the sequence identifier on the "+"
    line.  If you want the to use PHRED scores, use "fastq" or "qual" as the
    output format instead, and Biopython will do the conversion for you:

    >>> print(record.format("fastq"))
    @slxa_0001_1_0001_01
    ACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTNNNNNN
    +
    IHGFEDCBA@?>=<;:9876543210/.-,++*)('&&%%$$##""
    <BLANKLINE>

    >>> print(record.format("qual"))
    >slxa_0001_1_0001_01
    40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21
    20 19 18 17 16 15 14 13 12 11 10 10 9 8 7 6 5 5 4 4 3 3 2 2
    1 1
    <BLANKLINE>

    As shown above, the poor quality Solexa reads have been mapped to the
    equivalent PHRED score (e.g. -5 to 1 as shown earlier).
    """
    if alphabet is not None:
        raise ValueError("The alphabet argument is no longer supported")

    q_mapping = {
        chr(letter): letter - SOLEXA_SCORE_OFFSET
        for letter in range(SOLEXA_SCORE_OFFSET - 5, 63 + SOLEXA_SCORE_OFFSET)
    }

    for title_line, seq_string, quality_string in FastqGeneralIterator(source):
        if title2ids:
            id, name, descr = title2ids(title_line)
        else:
            descr = title_line
            id = descr.split()[0]
            name = id
        record = SeqRecord(Seq(seq_string), id=id, name=name, description=descr)
        try:
            qualities = [q_mapping[letter] for letter in quality_string]
        # DO NOT convert these into PHRED qualities automatically!
        except KeyError:
            raise ValueError("Invalid character in quality string") from None
        # Dirty trick to speed up this line:
        # record.letter_annotations["solexa_quality"] = qualities
        dict.__setitem__(record._per_letter_annotations, "solexa_quality", qualities)
        yield record


def FastqIlluminaIterator(source, alphabet=None, title2ids=None):
    """Parse Illumina 1.3 to 1.7 FASTQ like files (which differ in the quality mapping).

    The optional arguments are the same as those for the FastqPhredIterator.

    For each sequence in Illumina 1.3+ FASTQ files there is a matching string
    encoding PHRED integer qualities using ASCII values with an offset of 64.

    >>> from Bio import SeqIO
    >>> record = SeqIO.read("Quality/illumina_faked.fastq", "fastq-illumina")
    >>> print("%s %s" % (record.id, record.seq))
    Test ACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTN
    >>> max(record.letter_annotations["phred_quality"])
    40
    >>> min(record.letter_annotations["phred_quality"])
    0

    NOTE - Older versions of the Solexa/Illumina pipeline encoded Solexa scores
    with an ASCII offset of 64. They are approximately equal but only for high
    quality reads. If you have an old Solexa/Illumina file with negative
    Solexa scores, and try and read this as an Illumina 1.3+ file it will fail:

    >>> record2 = SeqIO.read("Quality/solexa_faked.fastq", "fastq-illumina")
    Traceback (most recent call last):
       ...
    ValueError: Invalid character in quality string

    NOTE - True Sanger style FASTQ files use PHRED scores with an offset of 33.
    """
    if alphabet is not None:
        raise ValueError("The alphabet argument is no longer supported")

    q_mapping = {
        chr(letter): letter - SOLEXA_SCORE_OFFSET
        for letter in range(SOLEXA_SCORE_OFFSET, 63 + SOLEXA_SCORE_OFFSET)
    }

    for title_line, seq_string, quality_string in FastqGeneralIterator(source):
        if title2ids:
            id, name, descr = title2ids(title_line)
        else:
            descr = title_line
            id = descr.split()[0]
            name = id
        record = SeqRecord(Seq(seq_string), id=id, name=name, description=descr)
        try:
            qualities = [q_mapping[letter] for letter in quality_string]
        except KeyError:
            raise ValueError("Invalid character in quality string") from None
        # Dirty trick to speed up this line:
        # record.letter_annotations["phred_quality"] = qualities
        dict.__setitem__(record._per_letter_annotations, "phred_quality", qualities)
        yield record


class QualPhredIterator(SequenceIterator):
    """Parser for QUAL files with PHRED quality scores but no sequence."""

    def __init__(self, source, alphabet=None, title2ids=None):
        """For QUAL files which include PHRED quality scores, but no sequence.

        For example, consider this short QUAL file::

            >EAS54_6_R1_2_1_413_324
            26 26 18 26 26 26 26 26 26 26 26 26 26 26 26 22 26 26 26 26
            26 26 26 23 23
            >EAS54_6_R1_2_1_540_792
            26 26 26 26 26 26 26 26 26 26 26 22 26 26 26 26 26 12 26 26
            26 18 26 23 18
            >EAS54_6_R1_2_1_443_348
            26 26 26 26 26 26 26 26 26 26 26 24 26 22 26 26 13 22 26 18
            24 18 18 18 18

        Using this module directly you might run:

        >>> with open("Quality/example.qual") as handle:
        ...     for record in QualPhredIterator(handle):
        ...         print("%s read of length %d" % (record.id, len(record.seq)))
        EAS54_6_R1_2_1_413_324 read of length 25
        EAS54_6_R1_2_1_540_792 read of length 25
        EAS54_6_R1_2_1_443_348 read of length 25

        Typically however, you would call this via Bio.SeqIO instead with "qual"
        as the format:

        >>> from Bio import SeqIO
        >>> with open("Quality/example.qual") as handle:
        ...     for record in SeqIO.parse(handle, "qual"):
        ...         print("%s read of length %d" % (record.id, len(record.seq)))
        EAS54_6_R1_2_1_413_324 read of length 25
        EAS54_6_R1_2_1_540_792 read of length 25
        EAS54_6_R1_2_1_443_348 read of length 25

        Only the sequence length is known, as the QUAL file does not contain
        the sequence string itself.

        The quality scores themselves are available as a list of integers
        in each record's per-letter-annotation:

        >>> print(record.letter_annotations["phred_quality"])
        [26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 24, 26, 22, 26, 26, 13, 22, 26, 18, 24, 18, 18, 18, 18]

        You can still slice one of these SeqRecord objects:

        >>> sub_record = record[5:10]
        >>> print("%s %s" % (sub_record.id, sub_record.letter_annotations["phred_quality"]))
        EAS54_6_R1_2_1_443_348 [26, 26, 26, 26, 26]

        As of Biopython 1.59, this parser will accept files with negatives quality
        scores but will replace them with the lowest possible PHRED score of zero.
        This will trigger a warning, previously it raised a ValueError exception.
        """
        if alphabet is not None:
            raise ValueError("The alphabet argument is no longer supported")
        self.title2ids = title2ids
        super().__init__(source, mode="t", fmt="QUAL")

    def parse(self, handle):
        """Start parsing the file, and return a SeqRecord generator."""
        records = self.iterate(handle)
        return records

    def iterate(self, handle):
        """Parse the file and generate SeqRecord objects."""
        title2ids = self.title2ids
        # Skip any text before the first record (e.g. blank lines, comments)
        for line in handle:
            if line[0] == ">":
                break
        else:
            return

        while True:
            if line[0] != ">":
                raise ValueError(
                    "Records in Fasta files should start with '>' character"
                )
            if title2ids:
                id, name, descr = title2ids(line[1:].rstrip())
            else:
                descr = line[1:].rstrip()
                id = descr.split()[0]
                name = id

            qualities = []
            for line in handle:
                if line[0] == ">":
                    break
                qualities.extend(int(word) for word in line.split())
            else:
                line = None

            if qualities and min(qualities) < 0:
                warnings.warn(
                    "Negative quality score %i found, substituting PHRED zero instead."
                    % min(qualities),
                    BiopythonParserWarning,
                )
                qualities = [max(0, q) for q in qualities]

            # Return the record and then continue...
            sequence = Seq(None, length=len(qualities))
            record = SeqRecord(sequence, id=id, name=name, description=descr)
            # Dirty trick to speed up this line:
            # record.letter_annotations["phred_quality"] = qualities
            dict.__setitem__(record._per_letter_annotations, "phred_quality", qualities)
            yield record

            if line is None:
                return  # StopIteration
        raise ValueError("Unrecognised QUAL record format.")


class FastqPhredWriter(SequenceWriter):
    """Class to write standard FASTQ format files (using PHRED quality scores) (OBSOLETE).

    Although you can use this class directly, you are strongly encouraged
    to use the ``as_fastq`` function, or top level ``Bio.SeqIO.write()``
    function instead via the format name "fastq" or the alias "fastq-sanger".

    For example, this code reads in a standard Sanger style FASTQ file
    (using PHRED scores) and re-saves it as another Sanger style FASTQ file:

    >>> from Bio import SeqIO
    >>> record_iterator = SeqIO.parse("Quality/example.fastq", "fastq")
    >>> with open("Quality/temp.fastq", "w") as out_handle:
    ...     SeqIO.write(record_iterator, out_handle, "fastq")
    3

    You might want to do this if the original file included extra line breaks,
    which while valid may not be supported by all tools.  The output file from
    Biopython will have each sequence on a single line, and each quality
    string on a single line (which is considered desirable for maximum
    compatibility).

    In this next example, an old style Solexa/Illumina FASTQ file (using Solexa
    quality scores) is converted into a standard Sanger style FASTQ file using
    PHRED qualities:

    >>> from Bio import SeqIO
    >>> record_iterator = SeqIO.parse("Quality/solexa_example.fastq", "fastq-solexa")
    >>> with open("Quality/temp.fastq", "w") as out_handle:
    ...     SeqIO.write(record_iterator, out_handle, "fastq")
    5

    This code is also called if you use the .format("fastq") method of a
    SeqRecord, or .format("fastq-sanger") if you prefer that alias.

    Note that Sanger FASTQ files have an upper limit of PHRED quality 93, which is
    encoded as ASCII 126, the tilde. If your quality scores are truncated to fit, a
    warning is issued.

    P.S. To avoid cluttering up your working directory, you can delete this
    temporary file now:

    >>> import os
    >>> os.remove("Quality/temp.fastq")
    """

    assert SANGER_SCORE_OFFSET == ord("!")

    def write_record(self, record):
        """Write a single FASTQ record to the file."""
        assert self._header_written
        assert not self._footer_written
        self._record_written = True
        # TODO - Is an empty sequence allowed in FASTQ format?
        seq = record.seq
        if seq is None:
            raise ValueError(f"No sequence for record {record.id}")
        qualities_str = _get_sanger_quality_str(record)
        if len(qualities_str) != len(seq):
            raise ValueError(
                "Record %s has sequence length %i but %i quality scores"
                % (record.id, len(seq), len(qualities_str))
            )

        # FASTQ files can include a description, just like FASTA files
        # (at least, this is what the NCBI Short Read Archive does)
        id = self.clean(record.id)
        description = self.clean(record.description)
        if description and description.split(None, 1)[0] == id:
            # The description includes the id at the start
            title = description
        elif description:
            title = f"{id} {description}"
        else:
            title = id

        self.handle.write(f"@{title}\n{seq}\n+\n{qualities_str}\n")


def as_fastq(record):
    """Turn a SeqRecord into a Sanger FASTQ formatted string.

    This is used internally by the SeqRecord's .format("fastq")
    method and by the SeqIO.write(..., ..., "fastq") function,
    and under the format alias "fastq-sanger" as well.
    """
    seq_str = _get_seq_string(record)
    qualities_str = _get_sanger_quality_str(record)
    if len(qualities_str) != len(seq_str):
        raise ValueError(
            "Record %s has sequence length %i but %i quality scores"
            % (record.id, len(seq_str), len(qualities_str))
        )
    id = _clean(record.id)
    description = _clean(record.description)
    if description and description.split(None, 1)[0] == id:
        title = description
    elif description:
        title = f"{id} {description}"
    else:
        title = id
    return f"@{title}\n{seq_str}\n+\n{qualities_str}\n"


class QualPhredWriter(SequenceWriter):
    """Class to write QUAL format files (using PHRED quality scores) (OBSOLETE).

    Although you can use this class directly, you are strongly encouraged
    to use the ``as_qual`` function, or top level ``Bio.SeqIO.write()``
    function instead.

    For example, this code reads in a FASTQ file and saves the quality scores
    into a QUAL file:

    >>> from Bio import SeqIO
    >>> record_iterator = SeqIO.parse("Quality/example.fastq", "fastq")
    >>> with open("Quality/temp.qual", "w") as out_handle:
    ...     SeqIO.write(record_iterator, out_handle, "qual")
    3

    This code is also called if you use the .format("qual") method of a
    SeqRecord.

    P.S. Don't forget to clean up the temp file if you don't need it anymore:

    >>> import os
    >>> os.remove("Quality/temp.qual")
    """

    def __init__(self, handle, wrap=60, record2title=None):
        """Create a QUAL writer.

        Arguments:
         - handle - Handle to an output file, e.g. as returned
           by open(filename, "w")
         - wrap   - Optional line length used to wrap sequence lines.
           Defaults to wrapping the sequence at 60 characters. Use
           zero (or None) for no wrapping, giving a single long line
           for the sequence.
         - record2title - Optional function to return the text to be
           used for the title line of each record.  By default a
           combination of the record.id and record.description is
           used.  If the record.description starts with the record.id,
           then just the record.description is used.

        The record2title argument is present for consistency with the
        Bio.SeqIO.FastaIO writer class.
        """
        super().__init__(handle)
        # self.handle = handle
        self.wrap = None
        if wrap:
            if wrap < 1:
                raise ValueError
        self.wrap = wrap
        self.record2title = record2title

    def write_record(self, record):
        """Write a single QUAL record to the file."""
        assert self._header_written
        assert not self._footer_written
        self._record_written = True

        handle = self.handle
        wrap = self.wrap

        if self.record2title:
            title = self.clean(self.record2title(record))
        else:
            id = self.clean(record.id)
            description = self.clean(record.description)
            if description and description.split(None, 1)[0] == id:
                # The description includes the id at the start
                title = description
            elif description:
                title = f"{id} {description}"
            else:
                title = id
        handle.write(f">{title}\n")

        qualities = _get_phred_quality(record)
        try:
            # This rounds to the nearest integer.
            # TODO - can we record a float in a qual file?
            qualities_strs = [("%i" % round(q, 0)) for q in qualities]
        except TypeError:
            if None in qualities:
                raise TypeError("A quality value of None was found") from None
            else:
                raise

        if wrap > 5:
            # Fast wrapping
            data = " ".join(qualities_strs)
            while True:
                if len(data) <= wrap:
                    self.handle.write(data + "\n")
                    break
                else:
                    # By construction there must be spaces in the first X chars
                    # (unless we have X digit or higher quality scores!)
                    i = data.rfind(" ", 0, wrap)
                    handle.write(data[:i] + "\n")
                    data = data[i + 1 :]
        elif wrap:
            # Safe wrapping
            while qualities_strs:
                line = qualities_strs.pop(0)
                while qualities_strs and len(line) + 1 + len(qualities_strs[0]) < wrap:
                    line += " " + qualities_strs.pop(0)
                handle.write(line + "\n")
        else:
            # No wrapping
            data = " ".join(qualities_strs)
            handle.write(data + "\n")


def as_qual(record):
    """Turn a SeqRecord into a QUAL formatted string.

    This is used internally by the SeqRecord's .format("qual")
    method and by the SeqIO.write(..., ..., "qual") function.
    """
    id = _clean(record.id)
    description = _clean(record.description)
    if description and description.split(None, 1)[0] == id:
        title = description
    elif description:
        title = f"{id} {description}"
    else:
        title = id
    lines = [f">{title}\n"]

    qualities = _get_phred_quality(record)
    try:
        # This rounds to the nearest integer.
        # TODO - can we record a float in a qual file?
        qualities_strs = [("%i" % round(q, 0)) for q in qualities]
    except TypeError:
        if None in qualities:
            raise TypeError("A quality value of None was found") from None
        else:
            raise

    # Safe wrapping
    while qualities_strs:
        line = qualities_strs.pop(0)
        while qualities_strs and len(line) + 1 + len(qualities_strs[0]) < 60:
            line += " " + qualities_strs.pop(0)
        lines.append(line + "\n")
    return "".join(lines)


class FastqSolexaWriter(SequenceWriter):
    r"""Write old style Solexa/Illumina FASTQ format files (with Solexa qualities) (OBSOLETE).

    This outputs FASTQ files like those from the early Solexa/Illumina
    pipeline, using Solexa scores and an ASCII offset of 64. These are
    NOT compatible with the standard Sanger style PHRED FASTQ files.

    If your records contain a "solexa_quality" entry under letter_annotations,
    this is used, otherwise any "phred_quality" entry will be used after
    conversion using the solexa_quality_from_phred function. If neither style
    of quality scores are present, an exception is raised.

    Although you can use this class directly, you are strongly encouraged
    to use the ``as_fastq_solexa`` function, or top-level ``Bio.SeqIO.write()``
    function instead.  For example, this code reads in a FASTQ file and re-saves
    it as another FASTQ file:

    >>> from Bio import SeqIO
    >>> record_iterator = SeqIO.parse("Quality/solexa_example.fastq", "fastq-solexa")
    >>> with open("Quality/temp.fastq", "w") as out_handle:
    ...     SeqIO.write(record_iterator, out_handle, "fastq-solexa")
    5

    You might want to do this if the original file included extra line breaks,
    which (while valid) may not be supported by all tools.  The output file
    from Biopython will have each sequence on a single line, and each quality
    string on a single line (which is considered desirable for maximum
    compatibility).

    This code is also called if you use the .format("fastq-solexa") method of
    a SeqRecord. For example,

    >>> record = SeqIO.read("Quality/sanger_faked.fastq", "fastq-sanger")
    >>> print(record.format("fastq-solexa"))
    @Test PHRED qualities from 40 to 0 inclusive
    ACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTN
    +
    hgfedcba`_^]\[ZYXWVUTSRQPONMLKJHGFECB@>;;
    <BLANKLINE>

    Note that Solexa FASTQ files have an upper limit of Solexa quality 62, which is
    encoded as ASCII 126, the tilde.  If your quality scores must be truncated to fit,
    a warning is issued.

    P.S. Don't forget to delete the temp file if you don't need it anymore:

    >>> import os
    >>> os.remove("Quality/temp.fastq")
    """

    def write_record(self, record):
        """Write a single FASTQ record to the file."""
        assert self._header_written
        assert not self._footer_written
        self._record_written = True

        # TODO - Is an empty sequence allowed in FASTQ format?
        seq = record.seq
        if seq is None:
            raise ValueError(f"No sequence for record {record.id}")
        qualities_str = _get_solexa_quality_str(record)
        if len(qualities_str) != len(seq):
            raise ValueError(
                "Record %s has sequence length %i but %i quality scores"
                % (record.id, len(seq), len(qualities_str))
            )

        # FASTQ files can include a description, just like FASTA files
        # (at least, this is what the NCBI Short Read Archive does)
        id = self.clean(record.id)
        description = self.clean(record.description)
        if description and description.split(None, 1)[0] == id:
            # The description includes the id at the start
            title = description
        elif description:
            title = f"{id} {description}"
        else:
            title = id

        self.handle.write(f"@{title}\n{seq}\n+\n{qualities_str}\n")


def as_fastq_solexa(record):
    """Turn a SeqRecord into a Solexa FASTQ formatted string.

    This is used internally by the SeqRecord's .format("fastq-solexa")
    method and by the SeqIO.write(..., ..., "fastq-solexa") function.
    """
    seq_str = _get_seq_string(record)
    qualities_str = _get_solexa_quality_str(record)
    if len(qualities_str) != len(seq_str):
        raise ValueError(
            "Record %s has sequence length %i but %i quality scores"
            % (record.id, len(seq_str), len(qualities_str))
        )
    id = _clean(record.id)
    description = _clean(record.description)
    if description and description.split(None, 1)[0] == id:
        # The description includes the id at the start
        title = description
    elif description:
        title = f"{id} {description}"
    else:
        title = id
    return f"@{title}\n{seq_str}\n+\n{qualities_str}\n"


class FastqIlluminaWriter(SequenceWriter):
    r"""Write Illumina 1.3+ FASTQ format files (with PHRED quality scores) (OBSOLETE).

    This outputs FASTQ files like those from the Solexa/Illumina 1.3+ pipeline,
    using PHRED scores and an ASCII offset of 64. Note these files are NOT
    compatible with the standard Sanger style PHRED FASTQ files which use an
    ASCII offset of 32.

    Although you can use this class directly, you are strongly encouraged to
    use the ``as_fastq_illumina`` or top-level ``Bio.SeqIO.write()`` function
    with format name "fastq-illumina" instead. This code is also called if you
    use the .format("fastq-illumina") method of a SeqRecord. For example,

    >>> from Bio import SeqIO
    >>> record = SeqIO.read("Quality/sanger_faked.fastq", "fastq-sanger")
    >>> print(record.format("fastq-illumina"))
    @Test PHRED qualities from 40 to 0 inclusive
    ACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTN
    +
    hgfedcba`_^]\[ZYXWVUTSRQPONMLKJIHGFEDCBA@
    <BLANKLINE>

    Note that Illumina FASTQ files have an upper limit of PHRED quality 62, which is
    encoded as ASCII 126, the tilde. If your quality scores are truncated to fit, a
    warning is issued.
    """

    def write_record(self, record):
        """Write a single FASTQ record to the file."""
        assert self._header_written
        assert not self._footer_written
        self._record_written = True

        # TODO - Is an empty sequence allowed in FASTQ format?
        seq = record.seq
        if seq is None:
            raise ValueError(f"No sequence for record {record.id}")
        qualities_str = _get_illumina_quality_str(record)
        if len(qualities_str) != len(seq):
            raise ValueError(
                "Record %s has sequence length %i but %i quality scores"
                % (record.id, len(seq), len(qualities_str))
            )

        # FASTQ files can include a description, just like FASTA files
        # (at least, this is what the NCBI Short Read Archive does)
        id = self.clean(record.id)
        description = self.clean(record.description)
        if description and description.split(None, 1)[0] == id:
            # The description includes the id at the start
            title = description
        elif description:
            title = f"{id} {description}"
        else:
            title = id

        self.handle.write(f"@{title}\n{seq}\n+\n{qualities_str}\n")


def as_fastq_illumina(record):
    """Turn a SeqRecord into an Illumina FASTQ formatted string.

    This is used internally by the SeqRecord's .format("fastq-illumina")
    method and by the SeqIO.write(..., ..., "fastq-illumina") function.
    """
    seq_str = _get_seq_string(record)
    qualities_str = _get_illumina_quality_str(record)
    if len(qualities_str) != len(seq_str):
        raise ValueError(
            "Record %s has sequence length %i but %i quality scores"
            % (record.id, len(seq_str), len(qualities_str))
        )
    id = _clean(record.id)
    description = _clean(record.description)
    if description and description.split(None, 1)[0] == id:
        title = description
    elif description:
        title = f"{id} {description}"
    else:
        title = id
    return f"@{title}\n{seq_str}\n+\n{qualities_str}\n"


def PairedFastaQualIterator(fasta_source, qual_source, alphabet=None, title2ids=None):
    """Iterate over matched FASTA and QUAL files as SeqRecord objects.

    For example, consider this short QUAL file with PHRED quality scores::

        >EAS54_6_R1_2_1_413_324
        26 26 18 26 26 26 26 26 26 26 26 26 26 26 26 22 26 26 26 26
        26 26 26 23 23
        >EAS54_6_R1_2_1_540_792
        26 26 26 26 26 26 26 26 26 26 26 22 26 26 26 26 26 12 26 26
        26 18 26 23 18
        >EAS54_6_R1_2_1_443_348
        26 26 26 26 26 26 26 26 26 26 26 24 26 22 26 26 13 22 26 18
        24 18 18 18 18

    And a matching FASTA file::

        >EAS54_6_R1_2_1_413_324
        CCCTTCTTGTCTTCAGCGTTTCTCC
        >EAS54_6_R1_2_1_540_792
        TTGGCAGGCCAAGGCCGATGGATCA
        >EAS54_6_R1_2_1_443_348
        GTTGCTTCTGGCGTGGGTGGGGGGG

    You can parse these separately using Bio.SeqIO with the "qual" and
    "fasta" formats, but then you'll get a group of SeqRecord objects with
    no sequence, and a matching group with the sequence but not the
    qualities.  Because it only deals with one input file handle, Bio.SeqIO
    can't be used to read the two files together - but this function can!
    For example,

    >>> with open("Quality/example.fasta") as f:
    ...     with open("Quality/example.qual") as q:
    ...         for record in PairedFastaQualIterator(f, q):
    ...             print("%s %s" % (record.id, record.seq))
    ...
    EAS54_6_R1_2_1_413_324 CCCTTCTTGTCTTCAGCGTTTCTCC
    EAS54_6_R1_2_1_540_792 TTGGCAGGCCAAGGCCGATGGATCA
    EAS54_6_R1_2_1_443_348 GTTGCTTCTGGCGTGGGTGGGGGGG

    As with the FASTQ or QUAL parsers, if you want to look at the qualities,
    they are in each record's per-letter-annotation dictionary as a simple
    list of integers:

    >>> print(record.letter_annotations["phred_quality"])
    [26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 24, 26, 22, 26, 26, 13, 22, 26, 18, 24, 18, 18, 18, 18]

    If you have access to data as a FASTQ format file, using that directly
    would be simpler and more straight forward.  Note that you can easily use
    this function to convert paired FASTA and QUAL files into FASTQ files:

    >>> from Bio import SeqIO
    >>> with open("Quality/example.fasta") as f:
    ...     with open("Quality/example.qual") as q:
    ...         SeqIO.write(PairedFastaQualIterator(f, q), "Quality/temp.fastq", "fastq")
    ...
    3

    And don't forget to clean up the temp file if you don't need it anymore:

    >>> import os
    >>> os.remove("Quality/temp.fastq")
    """
    if alphabet is not None:
        raise ValueError("The alphabet argument is no longer supported")

    from Bio.SeqIO.FastaIO import FastaIterator

    fasta_iter = FastaIterator(fasta_source, title2ids=title2ids)
    qual_iter = QualPhredIterator(qual_source, title2ids=title2ids)

    # Using zip wouldn't load everything into memory, but also would not catch
    # any extra records found in only one file.
    while True:
        try:
            f_rec = next(fasta_iter)
        except StopIteration:
            f_rec = None
        try:
            q_rec = next(qual_iter)
        except StopIteration:
            q_rec = None
        if f_rec is None and q_rec is None:
            # End of both files
            break
        if f_rec is None:
            raise ValueError("FASTA file has more entries than the QUAL file.")
        if q_rec is None:
            raise ValueError("QUAL file has more entries than the FASTA file.")
        if f_rec.id != q_rec.id:
            raise ValueError(
                f"FASTA and QUAL entries do not match ({f_rec.id} vs {q_rec.id})."
            )
        if len(f_rec) != len(q_rec.letter_annotations["phred_quality"]):
            raise ValueError(
                f"Sequence length and number of quality scores disagree for {f_rec.id}"
            )
        # Merge the data....
        f_rec.letter_annotations["phred_quality"] = q_rec.letter_annotations[
            "phred_quality"
        ]
        yield f_rec
    # Done


def _fastq_generic(in_file, out_file, mapping):
    """FASTQ helper function where can't have data loss by truncation (PRIVATE)."""
    # For real speed, don't even make SeqRecord and Seq objects!
    count = 0
    null = chr(0)
    with as_handle(out_file, "w") as out_handle:
        for title, seq, old_qual in FastqGeneralIterator(in_file):
            count += 1
            # map the qual...
            qual = old_qual.translate(mapping)
            if null in qual:
                raise ValueError("Invalid character in quality string")
            out_handle.write(f"@{title}\n{seq}\n+\n{qual}\n")
    return count


def _fastq_generic2(in_file, out_file, mapping, truncate_char, truncate_msg):
    """FASTQ helper function where there could be data loss by truncation (PRIVATE)."""
    # For real speed, don't even make SeqRecord and Seq objects!
    count = 0
    null = chr(0)
    with as_handle(out_file, "w") as out_handle:
        for title, seq, old_qual in FastqGeneralIterator(in_file):
            count += 1
            # map the qual...
            qual = old_qual.translate(mapping)
            if null in qual:
                raise ValueError("Invalid character in quality string")
            if truncate_char in qual:
                qual = qual.replace(truncate_char, chr(126))
                warnings.warn(truncate_msg, BiopythonWarning)
            out_handle.write(f"@{title}\n{seq}\n+\n{qual}\n")
    return count


def _fastq_sanger_convert_fastq_sanger(in_file, out_file):
    """Fast Sanger FASTQ to Sanger FASTQ conversion (PRIVATE).

    Useful for removing line wrapping and the redundant second identifier
    on the plus lines. Will check also check the quality string is valid.

    Avoids creating SeqRecord and Seq objects in order to speed up this
    conversion.
    """
    # Map unexpected chars to null
    mapping = "".join(
        [chr(0) for ascii in range(0, 33)]
        + [chr(ascii) for ascii in range(33, 127)]
        + [chr(0) for ascii in range(127, 256)]
    )
    assert len(mapping) == 256
    return _fastq_generic(in_file, out_file, mapping)


def _fastq_solexa_convert_fastq_solexa(in_file, out_file):
    """Fast Solexa FASTQ to Solexa FASTQ conversion (PRIVATE).

    Useful for removing line wrapping and the redundant second identifier
    on the plus lines. Will check also check the quality string is valid.
    Avoids creating SeqRecord and Seq objects in order to speed up this
    conversion.
    """
    # Map unexpected chars to null
    mapping = "".join(
        [chr(0) for ascii in range(0, 59)]
        + [chr(ascii) for ascii in range(59, 127)]
        + [chr(0) for ascii in range(127, 256)]
    )
    assert len(mapping) == 256
    return _fastq_generic(in_file, out_file, mapping)


def _fastq_illumina_convert_fastq_illumina(in_file, out_file):
    """Fast Illumina 1.3+ FASTQ to Illumina 1.3+ FASTQ conversion (PRIVATE).

    Useful for removing line wrapping and the redundant second identifier
    on the plus lines. Will check also check the quality string is valid.
    Avoids creating SeqRecord and Seq objects in order to speed up this
    conversion.
    """
    # Map unexpected chars to null
    mapping = "".join(
        [chr(0) for ascii in range(0, 64)]
        + [chr(ascii) for ascii in range(64, 127)]
        + [chr(0) for ascii in range(127, 256)]
    )
    assert len(mapping) == 256
    return _fastq_generic(in_file, out_file, mapping)


def _fastq_illumina_convert_fastq_sanger(in_file, out_file):
    """Fast Illumina 1.3+ FASTQ to Sanger FASTQ conversion (PRIVATE).

    Avoids creating SeqRecord and Seq objects in order to speed up this
    conversion.
    """
    # Map unexpected chars to null
    mapping = "".join(
        [chr(0) for ascii in range(0, 64)]
        + [chr(33 + q) for q in range(0, 62 + 1)]
        + [chr(0) for ascii in range(127, 256)]
    )
    assert len(mapping) == 256
    return _fastq_generic(in_file, out_file, mapping)


def _fastq_sanger_convert_fastq_illumina(in_file, out_file):
    """Fast Sanger FASTQ to Illumina 1.3+ FASTQ conversion (PRIVATE).

    Avoids creating SeqRecord and Seq objects in order to speed up this
    conversion. Will issue a warning if the scores had to be truncated at 62
    (maximum possible in the Illumina 1.3+ FASTQ format)
    """
    # Map unexpected chars to null
    trunc_char = chr(1)
    mapping = "".join(
        [chr(0) for ascii in range(0, 33)]
        + [chr(64 + q) for q in range(0, 62 + 1)]
        + [trunc_char for ascii in range(96, 127)]
        + [chr(0) for ascii in range(127, 256)]
    )
    assert len(mapping) == 256
    return _fastq_generic2(
        in_file,
        out_file,
        mapping,
        trunc_char,
        "Data loss - max PHRED quality 62 in Illumina 1.3+ FASTQ",
    )


def _fastq_solexa_convert_fastq_sanger(in_file, out_file):
    """Fast Solexa FASTQ to Sanger FASTQ conversion (PRIVATE).

    Avoids creating SeqRecord and Seq objects in order to speed up this
    conversion.
    """
    # Map unexpected chars to null
    mapping = "".join(
        [chr(0) for ascii in range(0, 59)]
        + [
            chr(33 + int(round(phred_quality_from_solexa(q))))
            for q in range(-5, 62 + 1)
        ]
        + [chr(0) for ascii in range(127, 256)]
    )
    assert len(mapping) == 256
    return _fastq_generic(in_file, out_file, mapping)


def _fastq_sanger_convert_fastq_solexa(in_file, out_file):
    """Fast Sanger FASTQ to Solexa FASTQ conversion (PRIVATE).

    Avoids creating SeqRecord and Seq objects in order to speed up this
    conversion. Will issue a warning if the scores had to be truncated at 62
    (maximum possible in the Solexa FASTQ format)
    """
    # Map unexpected chars to null
    trunc_char = chr(1)
    mapping = "".join(
        [chr(0) for ascii in range(0, 33)]
        + [chr(64 + int(round(solexa_quality_from_phred(q)))) for q in range(0, 62 + 1)]
        + [trunc_char for ascii in range(96, 127)]
        + [chr(0) for ascii in range(127, 256)]
    )
    assert len(mapping) == 256
    return _fastq_generic2(
        in_file,
        out_file,
        mapping,
        trunc_char,
        "Data loss - max Solexa quality 62 in Solexa FASTQ",
    )


def _fastq_solexa_convert_fastq_illumina(in_file, out_file):
    """Fast Solexa FASTQ to Illumina 1.3+ FASTQ conversion (PRIVATE).

    Avoids creating SeqRecord and Seq objects in order to speed up this
    conversion.
    """
    # Map unexpected chars to null
    mapping = "".join(
        [chr(0) for ascii in range(0, 59)]
        + [
            chr(64 + int(round(phred_quality_from_solexa(q))))
            for q in range(-5, 62 + 1)
        ]
        + [chr(0) for ascii in range(127, 256)]
    )
    assert len(mapping) == 256
    return _fastq_generic(in_file, out_file, mapping)


def _fastq_illumina_convert_fastq_solexa(in_file, out_file):
    """Fast Illumina 1.3+ FASTQ to Solexa FASTQ conversion (PRIVATE).

    Avoids creating SeqRecord and Seq objects in order to speed up this
    conversion.
    """
    # Map unexpected chars to null
    mapping = "".join(
        [chr(0) for ascii in range(0, 64)]
        + [chr(64 + int(round(solexa_quality_from_phred(q)))) for q in range(0, 62 + 1)]
        + [chr(0) for ascii in range(127, 256)]
    )
    assert len(mapping) == 256
    return _fastq_generic(in_file, out_file, mapping)


def _fastq_convert_fasta(in_file, out_file):
    """Fast FASTQ to FASTA conversion (PRIVATE).

    Avoids dealing with the FASTQ quality encoding, and creating SeqRecord and
    Seq objects in order to speed up this conversion.

    NOTE - This does NOT check the characters used in the FASTQ quality string
    are valid!
    """
    # For real speed, don't even make SeqRecord and Seq objects!
    count = 0
    with as_handle(out_file, "w") as out_handle:
        for title, seq, qual in FastqGeneralIterator(in_file):
            count += 1
            out_handle.write(f">{title}\n")
            # Do line wrapping
            for i in range(0, len(seq), 60):
                out_handle.write(seq[i : i + 60] + "\n")
    return count


def _fastq_convert_tab(in_file, out_file):
    """Fast FASTQ to simple tabbed conversion (PRIVATE).

    Avoids dealing with the FASTQ quality encoding, and creating SeqRecord and
    Seq objects in order to speed up this conversion.

    NOTE - This does NOT check the characters used in the FASTQ quality string
    are valid!
    """
    # For real speed, don't even make SeqRecord and Seq objects!
    count = 0
    with as_handle(out_file, "w") as out_handle:
        for title, seq, qual in FastqGeneralIterator(in_file):
            count += 1
            out_handle.write(f"{title.split(None, 1)[0]}\t{seq}\n")
    return count


def _fastq_convert_qual(in_file, out_file, mapping):
    """FASTQ helper function for QUAL output (PRIVATE).

    Mapping should be a dictionary mapping expected ASCII characters from the
    FASTQ quality string to PHRED quality scores (as strings).
    """
    # For real speed, don't even make SeqRecord and Seq objects!
    count = 0
    with as_handle(out_file, "w") as out_handle:
        for title, seq, qual in FastqGeneralIterator(in_file):
            count += 1
            out_handle.write(f">{title}\n")
            # map the qual... note even with Sanger encoding max 2 digits
            try:
                qualities_strs = [mapping[ascii] for ascii in qual]
            except KeyError:
                raise ValueError("Invalid character in quality string") from None
            data = " ".join(qualities_strs)
            while len(data) > 60:
                # Know quality scores are either 1 or 2 digits, so there
                # must be a space in any three consecutive characters.
                if data[60] == " ":
                    out_handle.write(data[:60] + "\n")
                    data = data[61:]
                elif data[59] == " ":
                    out_handle.write(data[:59] + "\n")
                    data = data[60:]
                else:
                    assert data[58] == " ", "Internal logic failure in wrapping"
                    out_handle.write(data[:58] + "\n")
                    data = data[59:]
            out_handle.write(data + "\n")
    return count


def _fastq_sanger_convert_qual(in_file, out_file):
    """Fast Sanger FASTQ to QUAL conversion (PRIVATE)."""
    mapping = {chr(q + 33): str(q) for q in range(0, 93 + 1)}
    return _fastq_convert_qual(in_file, out_file, mapping)


def _fastq_solexa_convert_qual(in_file, out_file):
    """Fast Solexa FASTQ to QUAL conversion (PRIVATE)."""
    mapping = {
        chr(q + 64): str(int(round(phred_quality_from_solexa(q))))
        for q in range(-5, 62 + 1)
    }
    return _fastq_convert_qual(in_file, out_file, mapping)


def _fastq_illumina_convert_qual(in_file, out_file):
    """Fast Illumina 1.3+ FASTQ to QUAL conversion (PRIVATE)."""
    mapping = {chr(q + 64): str(q) for q in range(0, 62 + 1)}
    return _fastq_convert_qual(in_file, out_file, mapping)


if __name__ == "__main__":
    from Bio._utils import run_doctest

    run_doctest(verbose=0)