Spaces:
No application file
No application file
File size: 12,533 Bytes
b7731cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 |
# Copyright 2017-2019 Damien Goutte-Gattat. All rights reserved.
#
# This file is part of the Biopython distribution and governed by your
# choice of the "Biopython License Agreement" or the "BSD 3-Clause License".
# Please see the LICENSE file that should have been included as part of this
# package.
"""Bio.SeqIO support for the "xdna" file format.
The Xdna binary format is generated by Christian Marck's DNA Strider program
and also used by Serial Cloner.
"""
import warnings
from re import match
from struct import pack
from struct import unpack
from Bio import BiopythonWarning
from Bio.Seq import Seq
from Bio.SeqFeature import ExactPosition
from Bio.SeqFeature import SimpleLocation
from Bio.SeqFeature import SeqFeature
from Bio.SeqRecord import SeqRecord
from .Interfaces import SequenceIterator
from .Interfaces import SequenceWriter
_seq_types = {
0: None,
1: "DNA",
2: "DNA",
3: "RNA",
4: "protein",
}
_seq_topologies = {0: "linear", 1: "circular"}
def _read(handle, length):
"""Read the specified number of bytes from the given handle."""
data = handle.read(length)
if len(data) < length:
raise ValueError("Cannot read %d bytes from handle" % length)
return data
def _read_pstring(handle):
"""Read a Pascal string.
A Pascal string comprises a single byte giving the length of the string
followed by as many bytes.
"""
length = unpack(">B", _read(handle, 1))[0]
return unpack("%ds" % length, _read(handle, length))[0].decode("ASCII")
def _read_pstring_as_integer(handle):
return int(_read_pstring(handle))
def _read_overhang(handle):
"""Read an overhang specification.
An overhang is represented in a XDNA file as:
- a Pascal string containing the text representation of the overhang
length, which also indicates the nature of the overhang:
- a length of zero means no overhang,
- a negative length means a 3' overhang,
- a positive length means a 5' overhang;
- the actual overhang sequence.
Examples:
- 0x01 0x30: no overhang ("0", as a P-string)
- 0x01 0x32 0x41 0x41: 5' AA overhang (P-string "2", then "AA")
- 0x02 0x2D 0x31 0x43: 3' C overhang (P-string "-1", then "C")
Returns a tuple (length, sequence).
"""
length = _read_pstring_as_integer(handle)
if length != 0:
overhang = _read(handle, abs(length))
return (length, overhang)
else:
return (None, None)
def _parse_feature_description(desc, qualifiers):
"""Parse the description field of a Xdna feature.
The 'description' field of a feature sometimes contains several
GenBank-like qualifiers, separated by carriage returns (CR, 0x0D).
"""
# Split the field's value in CR-separated lines, skipping empty lines
for line in [x for x in desc.split("\x0D") if len(x) > 0]:
# Is it a qualifier="value" line?
m = match('^([^=]+)="([^"]+)"?$', line)
if m:
# Store the qualifier as provided
qual, value = m.groups()
qualifiers[qual] = [value]
elif '"' not in line: # Reject ill-formed qualifiers
# Store the entire line as a generic note qualifier
qualifiers["note"] = [line]
def _read_feature(handle, record):
"""Read a single sequence feature."""
name = _read_pstring(handle)
desc = _read_pstring(handle)
type = _read_pstring(handle) or "misc_feature"
start = _read_pstring_as_integer(handle)
end = _read_pstring_as_integer(handle)
# Feature flags (4 bytes):
# byte 1 is the strand (0: reverse strand, 1: forward strand);
# byte 2 tells whether to display the feature;
# byte 4 tells whether to draw an arrow when displaying the feature;
# meaning of byte 3 is unknown.
(forward, display, arrow) = unpack(">BBxB", _read(handle, 4))
if forward:
strand = 1
else:
strand = -1
start, end = end, start
# The last field is a Pascal string usually containing a
# comma-separated triplet of numbers ranging from 0 to 255.
# I suspect this represents the RGB color to use when displaying
# the feature. Skip it as we have no need for it.
_read_pstring(handle)
# Assemble the feature
# Shift start by -1 as XDNA feature coordinates are 1-based
# while Biopython uses 0-based counting.
location = SimpleLocation(start - 1, end, strand=strand)
qualifiers = {}
if name:
qualifiers["label"] = [name]
_parse_feature_description(desc, qualifiers)
feature = SeqFeature(location, type=type, qualifiers=qualifiers)
record.features.append(feature)
class XdnaIterator(SequenceIterator):
"""Parser for Xdna files."""
def __init__(self, source):
"""Parse a Xdna file and return a SeqRecord object.
Argument source is a file-like object in binary mode or a path to a file.
Note that this is an "iterator" in name only since an Xdna file always
contain a single sequence.
"""
super().__init__(source, mode="b", fmt="Xdna")
def parse(self, handle):
"""Start parsing the file, and return a SeqRecord generator."""
# Parse fixed-size header and do some rudimentary checks
#
# The "neg_length" value is the length of the part of the sequence
# before the nucleotide considered as the "origin" (nucleotide number 1,
# which in DNA Strider is not always the first nucleotide).
# Biopython's SeqRecord has no such concept of a sequence origin as far
# as I know, so we ignore that value. SerialCloner has no such concept
# either and always generates files with a neg_length of zero.
header = handle.read(112)
if not header:
raise ValueError("Empty file.")
if len(header) < 112:
raise ValueError("Improper header, cannot read 112 bytes from handle")
records = self.iterate(handle, header)
return records
def iterate(self, handle, header):
"""Parse the file and generate SeqRecord objects."""
(version, seq_type, topology, length, neg_length, com_length) = unpack(
">BBB25xII60xI12x", header
)
if version != 0:
raise ValueError("Unsupported XDNA version")
if seq_type not in _seq_types:
raise ValueError("Unknown sequence type")
# Read actual sequence and comment found in all XDNA files
sequence = _read(handle, length).decode("ASCII")
comment = _read(handle, com_length).decode("ASCII")
# Try to derive a name from the first "word" of the comment
name = comment.split(" ")[0]
# Create record object
record = SeqRecord(Seq(sequence), description=comment, name=name, id=name)
if _seq_types[seq_type]:
record.annotations["molecule_type"] = _seq_types[seq_type]
if topology in _seq_topologies:
record.annotations["topology"] = _seq_topologies[topology]
if len(handle.read(1)) == 1:
# This is an XDNA file with an optional annotation section.
# Skip the overhangs as I don't know how to represent
# them in the SeqRecord model.
_read_overhang(handle) # right-side overhang
_read_overhang(handle) # left-side overhang
# Read the features
num_features = unpack(">B", _read(handle, 1))[0]
while num_features > 0:
_read_feature(handle, record)
num_features -= 1
yield record
class XdnaWriter(SequenceWriter):
"""Write files in the Xdna format."""
def __init__(self, target):
"""Initialize an Xdna writer object.
Arguments:
- target - Output stream opened in binary mode, or a path to a file.
"""
super().__init__(target, mode="wb")
def write_file(self, records):
"""Write the specified record to a Xdna file.
Note that the function expects a list (or iterable) of records
as per the SequenceWriter interface, but the list should contain
only one record as the Xdna format is a mono-record format.
"""
records = iter(records)
try:
record = next(records)
except StopIteration:
raise ValueError("Must have one sequence") from None
try:
next(records)
raise ValueError("More than one sequence found")
except StopIteration:
pass
self._has_truncated_strings = False
molecule_type = record.annotations.get("molecule_type")
if molecule_type is None:
seqtype = 0
elif "DNA" in molecule_type:
seqtype = 1
elif "RNA" in molecule_type:
seqtype = 3
elif "protein" in molecule_type:
seqtype = 4
else:
seqtype = 0
if record.annotations.get("topology", "linear") == "circular":
topology = 1
else:
topology = 0
# We store the record's id and description in the comment field.
# Make sure to avoid duplicating the id if it is already
# contained in the description.
if record.description.startswith(record.id):
comment = record.description
else:
comment = f"{record.id} {record.description}"
# Write header
self.handle.write(
pack(
">BBB25xII60xI11xB",
0, # version
seqtype,
topology,
len(record),
0, # negative length
len(comment),
255, # end of header
)
)
# Actual sequence and comment
self.handle.write(bytes(record.seq))
self.handle.write(comment.encode("ASCII"))
self.handle.write(pack(">B", 0)) # Annotation section marker
self._write_pstring("0") # right-side overhang
self._write_pstring("0") # left-side overhand
# Write features
# We must skip features with fuzzy locations as they cannot be
# represented in the Xdna format
features = [
f
for f in record.features
if type(f.location.start) == ExactPosition
and type(f.location.end) == ExactPosition
]
drop = len(record.features) - len(features)
if drop > 0:
warnings.warn(
f"Dropping {drop} features with fuzzy locations", BiopythonWarning
)
# We also cannot store more than 255 features as the number of
# features is stored on a single byte...
if len(features) > 255:
drop = len(features) - 255
warnings.warn(
f"Too many features, dropping the last {drop}", BiopythonWarning
)
features = features[:255]
self.handle.write(pack(">B", len(features)))
for feature in features:
self._write_pstring(feature.qualifiers.get("label", [""])[0])
description = ""
for qname in feature.qualifiers:
if qname in ("label", "translation"):
continue
for val in feature.qualifiers[qname]:
if len(description) > 0:
description = description + "\x0D"
description = description + f'{qname}="{val}"'
self._write_pstring(description)
self._write_pstring(feature.type)
start = int(feature.location.start) + 1 # 1-based coordinates
end = int(feature.location.end)
strand = 1
if feature.location.strand == -1:
start, end = end, start
strand = 0
self._write_pstring(str(start))
self._write_pstring(str(end))
self.handle.write(pack(">BBBB", strand, 1, 0, 1))
self._write_pstring("127,127,127")
if self._has_truncated_strings:
warnings.warn(
"Some annotations were truncated to 255 characters", BiopythonWarning
)
return 1
def _write_pstring(self, s):
"""Write the given string as a Pascal string."""
if len(s) > 255:
self._has_truncated_strings = True
s = s[:255]
self.handle.write(pack(">B", len(s)))
self.handle.write(s.encode("ASCII"))
|