Spaces:
No application file
No application file
File size: 23,125 Bytes
b7731cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 |
#!/usr/bin/env python
# Copyright 2002 by Thomas Sicheritz-Ponten and Cecilia Alsmark.
# Copyright 2003 Yair Benita.
# Revisions copyright 2014 by Markus Piotrowski.
# Revisions copyright 2014-2016 by Peter Cock.
# All rights reserved.
# This file is part of the Biopython distribution and governed by your
# choice of the "Biopython License Agreement" or the "BSD 3-Clause License".
# Please see the LICENSE file that should have been included as part of this
# package.
"""Miscellaneous functions for dealing with sequences."""
import re
import warnings
from math import pi, sin, cos, log, exp
from Bio.Seq import Seq, complement, complement_rna
from Bio.Data import IUPACData
from Bio.Data.CodonTable import standard_dna_table
from Bio import BiopythonDeprecationWarning
######################################
# DNA
######################
# {
_gc_values = {
"G": 1.000,
"C": 1.000,
"A": 0.000,
"T": 0.000,
"S": 1.000, # Strong interaction (3 H bonds) (G or C)
"W": 0.000, # Weak interaction (2 H bonds) (A or T)
"M": 0.500, # Amino (A or C)
"R": 0.500, # Purine (A or G)
"Y": 0.500, # Pyrimidine (T or C)
"K": 0.500, # Keto (G or T)
"V": 2 / 3, # Not T or U (A or C or G)
"B": 2 / 3, # Not A (C or G or T)
"H": 1 / 3, # Not G (A or C or T)
"D": 1 / 3, # Not C (A or G or T)
"X": 0.500, # Any nucleotide (A or C or G or T)
"N": 0.500, # Any nucleotide (A or C or G or T)
}
def gc_fraction(seq, ambiguous="remove"):
"""Calculate G+C percentage in seq (float between 0 and 1).
Copes with mixed case sequences. Ambiguous Nucleotides in this context are
those different from ATCGSW (S is G or C, and W is A or T).
If ambiguous equals "remove" (default), will only count GCS and will only
include ACTGSW when calculating the sequence length. Equivalent to removing
all characters in the set BDHKMNRVXY before calculating the GC content, as
each of these ambiguous nucleotides can either be in (A,T) or in (C,G).
If ambiguous equals "ignore", it will treat only unambiguous nucleotides (GCS)
as counting towards the GC percentage, but will include all ambiguous and
unambiguous nucleotides when calculating the sequence length.
If ambiguous equals "weighted", will use a "mean" value when counting the
ambiguous characters, for example, G and C will be counted as 1, N and X will
be counted as 0.5, D will be counted as 0.33 etc. See Bio.SeqUtils._gc_values
for a full list.
Will raise a ValueError for any other value of the ambiguous parameter.
>>> from Bio.SeqUtils import gc_fraction
>>> seq = "ACTG"
>>> print(f"GC content of {seq} : {gc_fraction(seq):.2f}")
GC content of ACTG : 0.50
S and W are ambiguous for the purposes of calculating the GC content.
>>> seq = "ACTGSSSS"
>>> gc = gc_fraction(seq, "remove")
>>> print(f"GC content of {seq} : {gc:.2f}")
GC content of ACTGSSSS : 0.75
>>> gc = gc_fraction(seq, "ignore")
>>> print(f"GC content of {seq} : {gc:.2f}")
GC content of ACTGSSSS : 0.75
>>> gc = gc_fraction(seq, "weighted")
>>> print(f"GC content with ambiguous counting: {gc:.2f}")
GC content with ambiguous counting: 0.75
Some examples with ambiguous nucleotides.
>>> seq = "ACTGN"
>>> gc = gc_fraction(seq, "ignore")
>>> print(f"GC content of {seq} : {gc:.2f}")
GC content of ACTGN : 0.40
>>> gc = gc_fraction(seq, "weighted")
>>> print(f"GC content with ambiguous counting: {gc:.2f}")
GC content with ambiguous counting: 0.50
>>> gc = gc_fraction(seq, "remove")
>>> print(f"GC content with ambiguous removing: {gc:.2f}")
GC content with ambiguous removing: 0.50
Ambiguous nucleotides are also removed from the length of the sequence.
>>> seq = "GDVV"
>>> gc = gc_fraction(seq, "ignore")
>>> print(f"GC content of {seq} : {gc:.2f}")
GC content of GDVV : 0.25
>>> gc = gc_fraction(seq, "weighted")
>>> print(f"GC content with ambiguous counting: {gc:.4f}")
GC content with ambiguous counting: 0.6667
>>> gc = gc_fraction(seq, "remove")
>>> print(f"GC content with ambiguous removing: {gc:.2f}")
GC content with ambiguous removing: 1.00
Note that this will return zero for an empty sequence.
"""
if ambiguous not in ("weighted", "remove", "ignore"):
raise ValueError(f"ambiguous value '{ambiguous}' not recognized")
gc = sum(seq.count(x) for x in "CGScgs")
if ambiguous == "remove":
length = gc + sum(seq.count(x) for x in "ATWatw")
else:
length = len(seq)
if ambiguous == "weighted":
gc += sum(
(seq.count(x) + seq.count(x.lower())) * _gc_values[x] for x in "BDHKMNRVXY"
)
if length == 0:
return 0
return gc / length
def GC(seq):
"""Calculate G+C content (DEPRECATED).
Use Bio.SeqUtils.gc_fraction instead.
"""
warnings.warn(
"GC is deprecated; please use gc_fraction instead.",
BiopythonDeprecationWarning,
)
gc = sum(seq.count(x) for x in ["G", "C", "g", "c", "S", "s"])
try:
return gc * 100.0 / len(seq)
except ZeroDivisionError:
return 0.0
def GC123(seq):
"""Calculate G+C content: total, for first, second and third positions.
Returns a tuple of four floats (percentages between 0 and 100) for the
entire sequence, and the three codon positions. e.g.
>>> from Bio.SeqUtils import GC123
>>> GC123("ACTGTN")
(40.0, 50.0, 50.0, 0.0)
Copes with mixed case sequences, but does NOT deal with ambiguous
nucleotides.
"""
d = {}
for nt in ["A", "T", "G", "C"]:
d[nt] = [0, 0, 0]
for i in range(0, len(seq), 3):
codon = seq[i : i + 3]
if len(codon) < 3:
codon += " "
for pos in range(0, 3):
for nt in ["A", "T", "G", "C"]:
if codon[pos] == nt or codon[pos] == nt.lower():
d[nt][pos] += 1
gc = {}
gcall = 0
nall = 0
for i in range(0, 3):
try:
n = d["G"][i] + d["C"][i] + d["T"][i] + d["A"][i]
gc[i] = (d["G"][i] + d["C"][i]) * 100.0 / n
except Exception: # TODO - ValueError?
gc[i] = 0
gcall = gcall + d["G"][i] + d["C"][i]
nall = nall + n
gcall = 100.0 * gcall / nall
return gcall, gc[0], gc[1], gc[2]
def GC_skew(seq, window=100):
"""Calculate GC skew (G-C)/(G+C) for multiple windows along the sequence.
Returns a list of ratios (floats), controlled by the length of the sequence
and the size of the window.
Returns 0 for windows without any G/C by handling zero division errors.
Does NOT look at any ambiguous nucleotides.
"""
# 8/19/03: Iddo: added lowercase
values = []
for i in range(0, len(seq), window):
s = seq[i : i + window]
g = s.count("G") + s.count("g")
c = s.count("C") + s.count("c")
try:
skew = (g - c) / (g + c)
except ZeroDivisionError:
skew = 0.0
values.append(skew)
return values
def xGC_skew(seq, window=1000, zoom=100, r=300, px=100, py=100):
"""Calculate and plot normal and accumulated GC skew (GRAPHICS !!!)."""
import tkinter
yscroll = tkinter.Scrollbar(orient=tkinter.VERTICAL)
xscroll = tkinter.Scrollbar(orient=tkinter.HORIZONTAL)
canvas = tkinter.Canvas(
yscrollcommand=yscroll.set, xscrollcommand=xscroll.set, background="white"
)
win = canvas.winfo_toplevel()
win.geometry("700x700")
yscroll.config(command=canvas.yview)
xscroll.config(command=canvas.xview)
yscroll.pack(side=tkinter.RIGHT, fill=tkinter.Y)
xscroll.pack(side=tkinter.BOTTOM, fill=tkinter.X)
canvas.pack(fill=tkinter.BOTH, side=tkinter.LEFT, expand=1)
canvas.update()
X0, Y0 = r + px, r + py
x1, x2, y1, y2 = X0 - r, X0 + r, Y0 - r, Y0 + r
ty = Y0
canvas.create_text(X0, ty, text="%s...%s (%d nt)" % (seq[:7], seq[-7:], len(seq)))
ty += 20
canvas.create_text(X0, ty, text=f"GC {GC(seq):3.2f}%")
ty += 20
canvas.create_text(X0, ty, text="GC Skew", fill="blue")
ty += 20
canvas.create_text(X0, ty, text="Accumulated GC Skew", fill="magenta")
ty += 20
canvas.create_oval(x1, y1, x2, y2)
acc = 0
start = 0
for gc in GC_skew(seq, window):
r1 = r
acc += gc
# GC skew
alpha = pi - (2 * pi * start) / len(seq)
r2 = r1 - gc * zoom
x1 = X0 + r1 * sin(alpha)
y1 = Y0 + r1 * cos(alpha)
x2 = X0 + r2 * sin(alpha)
y2 = Y0 + r2 * cos(alpha)
canvas.create_line(x1, y1, x2, y2, fill="blue")
# accumulated GC skew
r1 = r - 50
r2 = r1 - acc
x1 = X0 + r1 * sin(alpha)
y1 = Y0 + r1 * cos(alpha)
x2 = X0 + r2 * sin(alpha)
y2 = Y0 + r2 * cos(alpha)
canvas.create_line(x1, y1, x2, y2, fill="magenta")
canvas.update()
start += window
canvas.configure(scrollregion=canvas.bbox(tkinter.ALL))
def nt_search(seq, subseq):
"""Search for a DNA subseq in seq, return list of [subseq, positions].
Use ambiguous values (like N = A or T or C or G, R = A or G etc.),
searches only on forward strand.
"""
pattern = ""
for nt in subseq:
value = IUPACData.ambiguous_dna_values[nt]
if len(value) == 1:
pattern += value
else:
pattern += f"[{value}]"
pos = -1
result = [pattern]
while True:
pos += 1
s = seq[pos:]
m = re.search(pattern, s)
if not m:
break
pos += int(m.start(0))
result.append(pos)
return result
######################################
# Protein
######################
def seq3(seq, custom_map=None, undef_code="Xaa"):
"""Convert protein sequence from one-letter to three-letter code.
The single required input argument 'seq' should be a protein sequence using
single letter codes, either as a Python string or as a Seq or MutableSeq
object.
This function returns the amino acid sequence as a string using the three
letter amino acid codes. Output follows the IUPAC standard (including
ambiguous characters B for "Asx", J for "Xle" and X for "Xaa", and also U
for "Sel" and O for "Pyl") plus "Ter" for a terminator given as an
asterisk. Any unknown character (including possible gap characters),
is changed into 'Xaa' by default.
e.g.
>>> from Bio.SeqUtils import seq3
>>> seq3("MAIVMGRWKGAR*")
'MetAlaIleValMetGlyArgTrpLysGlyAlaArgTer'
You can set a custom translation of the codon termination code using the
dictionary "custom_map" argument (which defaults to {'*': 'Ter'}), e.g.
>>> seq3("MAIVMGRWKGAR*", custom_map={"*": "***"})
'MetAlaIleValMetGlyArgTrpLysGlyAlaArg***'
You can also set a custom translation for non-amino acid characters, such
as '-', using the "undef_code" argument, e.g.
>>> seq3("MAIVMGRWKGA--R*", undef_code='---')
'MetAlaIleValMetGlyArgTrpLysGlyAla------ArgTer'
If not given, "undef_code" defaults to "Xaa", e.g.
>>> seq3("MAIVMGRWKGA--R*")
'MetAlaIleValMetGlyArgTrpLysGlyAlaXaaXaaArgTer'
This function was inspired by BioPerl's seq3.
"""
if custom_map is None:
custom_map = {"*": "Ter"}
# not doing .update() on IUPACData dict with custom_map dict
# to preserve its initial state (may be imported in other modules)
threecode = dict(
list(IUPACData.protein_letters_1to3_extended.items()) + list(custom_map.items())
)
# We use a default of 'Xaa' for undefined letters
# Note this will map '-' to 'Xaa' which may be undesirable!
return "".join(threecode.get(aa, undef_code) for aa in seq)
def seq1(seq, custom_map=None, undef_code="X"):
"""Convert protein sequence from three-letter to one-letter code.
The single required input argument 'seq' should be a protein sequence
using three-letter codes, either as a Python string or as a Seq or
MutableSeq object.
This function returns the amino acid sequence as a string using the one
letter amino acid codes. Output follows the IUPAC standard (including
ambiguous characters "B" for "Asx", "J" for "Xle", "X" for "Xaa", "U" for
"Sel", and "O" for "Pyl") plus "*" for a terminator given the "Ter" code.
Any unknown character (including possible gap characters), is changed
into '-' by default.
e.g.
>>> from Bio.SeqUtils import seq1
>>> seq1("MetAlaIleValMetGlyArgTrpLysGlyAlaArgTer")
'MAIVMGRWKGAR*'
The input is case insensitive, e.g.
>>> from Bio.SeqUtils import seq1
>>> seq1("METalaIlEValMetGLYArgtRplysGlyAlaARGTer")
'MAIVMGRWKGAR*'
You can set a custom translation of the codon termination code using the
dictionary "custom_map" argument (defaulting to {'Ter': '*'}), e.g.
>>> seq1("MetAlaIleValMetGlyArgTrpLysGlyAla***", custom_map={"***": "*"})
'MAIVMGRWKGA*'
You can also set a custom translation for non-amino acid characters, such
as '-', using the "undef_code" argument, e.g.
>>> seq1("MetAlaIleValMetGlyArgTrpLysGlyAla------ArgTer", undef_code='?')
'MAIVMGRWKGA??R*'
If not given, "undef_code" defaults to "X", e.g.
>>> seq1("MetAlaIleValMetGlyArgTrpLysGlyAla------ArgTer")
'MAIVMGRWKGAXXR*'
"""
if custom_map is None:
custom_map = {"Ter": "*"}
# reverse map of threecode
# upper() on all keys to enable caps-insensitive input seq handling
onecode = {k.upper(): v for k, v in IUPACData.protein_letters_3to1_extended.items()}
# add the given termination codon code and custom maps
onecode.update((k.upper(), v) for k, v in custom_map.items())
seqlist = [seq[3 * i : 3 * (i + 1)] for i in range(len(seq) // 3)]
return "".join(onecode.get(aa.upper(), undef_code) for aa in seqlist)
######################################
# Mixed ???
######################
def molecular_weight(
seq, seq_type="DNA", double_stranded=False, circular=False, monoisotopic=False
):
"""Calculate the molecular mass of DNA, RNA or protein sequences as float.
Only unambiguous letters are allowed. Nucleotide sequences are assumed to
have a 5' phosphate.
Arguments:
- seq: string, Seq, or SeqRecord object.
- seq_type: The default is to assume DNA; override this with a string
"DNA", "RNA", or "protein".
- double_stranded: Calculate the mass for the double stranded molecule?
- circular: Is the molecule circular (has no ends)?
- monoisotopic: Use the monoisotopic mass tables?
>>> print("%0.2f" % molecular_weight("AGC"))
949.61
>>> print("%0.2f" % molecular_weight(Seq("AGC")))
949.61
However, it is better to be explicit - for example with strings:
>>> print("%0.2f" % molecular_weight("AGC", "DNA"))
949.61
>>> print("%0.2f" % molecular_weight("AGC", "RNA"))
997.61
>>> print("%0.2f" % molecular_weight("AGC", "protein"))
249.29
"""
try:
seq = seq.seq
except AttributeError: # not a SeqRecord object
pass
seq = "".join(str(seq).split()).upper() # Do the minimum formatting
if seq_type == "DNA":
if monoisotopic:
weight_table = IUPACData.monoisotopic_unambiguous_dna_weights
else:
weight_table = IUPACData.unambiguous_dna_weights
elif seq_type == "RNA":
if monoisotopic:
weight_table = IUPACData.monoisotopic_unambiguous_rna_weights
else:
weight_table = IUPACData.unambiguous_rna_weights
elif seq_type == "protein":
if monoisotopic:
weight_table = IUPACData.monoisotopic_protein_weights
else:
weight_table = IUPACData.protein_weights
else:
raise ValueError(f"Allowed seq_types are DNA, RNA or protein, not {seq_type!r}")
if monoisotopic:
water = 18.010565
else:
water = 18.0153
try:
weight = sum(weight_table[x] for x in seq) - (len(seq) - 1) * water
if circular:
weight -= water
except KeyError as e:
raise ValueError(
f"'{e}' is not a valid unambiguous letter for {seq_type}"
) from None
if double_stranded:
if seq_type == "protein":
raise ValueError("protein sequences cannot be double-stranded")
elif seq_type == "DNA":
seq = complement(seq, inplace=False) # TODO: remove inplace=False
elif seq_type == "RNA":
seq = complement_rna(seq)
weight += sum(weight_table[x] for x in seq) - (len(seq) - 1) * water
if circular:
weight -= water
return weight
def six_frame_translations(seq, genetic_code=1):
"""Return pretty string showing the 6 frame translations and GC content.
Nice looking 6 frame translation with GC content - code from xbbtools
similar to DNA Striders six-frame translation
>>> from Bio.SeqUtils import six_frame_translations
>>> print(six_frame_translations("AUGGCCAUUGUAAUGGGCCGCUGA"))
GC_Frame: a:5 t:0 g:8 c:5
Sequence: auggccauug ... gggccgcuga, 24 nt, 54.17 %GC
<BLANKLINE>
<BLANKLINE>
1/1
G H C N G P L
W P L * W A A
M A I V M G R *
auggccauuguaaugggccgcuga 54 %
uaccgguaacauuacccggcgacu
A M T I P R Q
H G N Y H A A S
P W Q L P G S
<BLANKLINE>
<BLANKLINE>
""" # noqa for pep8 W291 trailing whitespace
from Bio.Seq import reverse_complement, reverse_complement_rna, translate
if "u" in seq.lower():
anti = reverse_complement_rna(seq)
else:
anti = reverse_complement(seq, inplace=False) # TODO: remove inplace=False
comp = anti[::-1]
length = len(seq)
frames = {}
for i in range(0, 3):
fragment_length = 3 * ((length - i) // 3)
frames[i + 1] = translate(seq[i : i + fragment_length], genetic_code)
frames[-(i + 1)] = translate(anti[i : i + fragment_length], genetic_code)[::-1]
# create header
if length > 20:
short = f"{seq[:10]} ... {seq[-10:]}"
else:
short = seq
header = "GC_Frame:"
for nt in ["a", "t", "g", "c"]:
header += " %s:%d" % (nt, seq.count(nt.upper()))
header += "\nSequence: %s, %d nt, %0.2f %%GC\n\n\n" % (
short.lower(),
length,
GC(seq),
)
res = header
for i in range(0, length, 60):
subseq = seq[i : i + 60]
csubseq = comp[i : i + 60]
p = i // 3
res += "%d/%d\n" % (i + 1, i / 3 + 1)
res += " " + " ".join(frames[3][p : p + 20]) + "\n"
res += " " + " ".join(frames[2][p : p + 20]) + "\n"
res += " ".join(frames[1][p : p + 20]) + "\n"
# seq
res += subseq.lower() + "%5d %%\n" % int(GC(subseq))
res += csubseq.lower() + "\n"
# - frames
res += " ".join(frames[-2][p : p + 20]) + "\n"
res += " " + " ".join(frames[-1][p : p + 20]) + "\n"
res += " " + " ".join(frames[-3][p : p + 20]) + "\n\n"
return res
class CodonAdaptationIndex(dict):
"""A codon adaptation index (CAI) implementation.
Implements the codon adaptation index (CAI) described by Sharp and
Li (Nucleic Acids Res. 1987 Feb 11;15(3):1281-95).
"""
def __init__(self, sequences, table=standard_dna_table):
"""Generate a codon adaptiveness table from the coding DNA sequences.
This calculates the relative adaptiveness of each codon (w_ij) as
defined by Sharp & Li (Nucleic Acids Research 15(3): 1281-1295 (1987))
from the provided codon DNA sequences.
Arguments:
- sequences: An iterable over DNA sequences, which may be plain
strings, Seq objects, MutableSeq objects, or SeqRecord
objects.
- table: A Bio.Data.CodonTable.CodonTable object defining the
genetic code. By default, the standard genetic code is
used.
"""
codons = {aminoacid: [] for aminoacid in table.protein_alphabet}
for codon, aminoacid in table.forward_table.items():
codons[aminoacid].append(codon)
synonymous_codons = tuple(list(codons.values()) + [table.stop_codons])
# count codon occurrences in the sequences.
counts = {c1 + c2 + c3: 0 for c1 in "ACGT" for c2 in "ACGT" for c3 in "ACGT"}
self.update(counts) # just to ensure that the dictionary is sorted
# iterate over sequence and count the codons
for sequence in sequences:
try: # SeqRecord
name = sequence.id
sequence = sequence.seq
except AttributeError: # str, Seq, or MutableSeq
name = None
sequence = sequence.upper()
for i in range(0, len(sequence), 3):
codon = sequence[i : i + 3]
try:
counts[codon] += 1
except KeyError:
if name is None:
message = f"illegal codon '{codon}'"
else:
message = f"illegal codon '{codon}' in gene {name}"
raise ValueError(message) from None
# Following the description in the original paper, we use a value
# of 0.5 for codons that do not appear in the reference sequences.
for codon, count in counts.items():
if count == 0:
counts[codon] = 0.5
for codons in synonymous_codons:
denominator = max(counts[codon] for codon in codons)
for codon in codons:
self[codon] = counts[codon] / denominator
def calculate(self, sequence):
"""Calculate and return the CAI (float) for the provided DNA sequence."""
cai_value, cai_length = 0, 0
try:
sequence = sequence.seq # SeqRecord
except AttributeError:
pass # str, Seq, or MutableSeq
sequence = sequence.upper()
for i in range(0, len(sequence), 3):
codon = sequence[i : i + 3]
if codon in ["ATG", "TGG"]:
# Exclude these two codons as their index is always one.
continue
try:
cai_value += log(self[codon])
except KeyError:
if codon in ["TGA", "TAA", "TAG"]:
# Stop codon, which is valid but may be missing from the index.
continue
raise TypeError(f"illegal codon in sequence: {codon}") from None
else:
cai_length += 1
return exp(cai_value / cai_length)
def __str__(self):
lines = []
for codon, value in self.items():
line = f"{codon}\t{value:.3f}"
lines.append(line)
return "\n".join(lines) + "\n"
if __name__ == "__main__":
from Bio._utils import run_doctest
run_doctest()
|