Spaces:
No application file
No application file
File size: 5,502 Bytes
b7731cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
# Copyright 2003, 2007 by Sebastian Bassi. [email protected]
# All rights reserved.
#
# This file is part of the Biopython distribution and governed by your
# choice of the "Biopython License Agreement" or the "BSD 3-Clause License".
# Please see the LICENSE file that should have been included as part of this
# package.
"""Local Composition Complexity."""
import math
def lcc_mult(seq, wsize):
"""Calculate Local Composition Complexity (LCC) values over sliding window.
Returns a list of floats, the LCC values for a sliding window over
the sequence.
seq - an unambiguous DNA sequence (a string or Seq object)
wsize - window size, integer
The result is the same as applying lcc_simp multiple times, but this
version is optimized for speed. The optimization works by using the
value of previous window as a base to compute the next one.
"""
l4 = math.log(4)
seq = seq.upper()
tamseq = len(seq)
compone = [0]
lccsal = []
for i in range(wsize):
compone.append(((i + 1) / wsize) * math.log((i + 1) / wsize) / l4)
window = seq[0:wsize]
cant_a = window.count("A")
cant_c = window.count("C")
cant_t = window.count("T")
cant_g = window.count("G")
term_a = compone[cant_a]
term_c = compone[cant_c]
term_t = compone[cant_t]
term_g = compone[cant_g]
lccsal.append(-(term_a + term_c + term_t + term_g))
tail = seq[0]
for x in range(tamseq - wsize):
window = seq[x + 1 : wsize + x + 1]
if tail == window[-1]:
lccsal.append(lccsal[-1])
elif tail == "A":
cant_a -= 1
if window.endswith("C"):
cant_c += 1
term_a = compone[cant_a]
term_c = compone[cant_c]
lccsal.append(-(term_a + term_c + term_t + term_g))
elif window.endswith("T"):
cant_t += 1
term_a = compone[cant_a]
term_t = compone[cant_t]
lccsal.append(-(term_a + term_c + term_t + term_g))
elif window.endswith("G"):
cant_g += 1
term_a = compone[cant_a]
term_g = compone[cant_g]
lccsal.append(-(term_a + term_c + term_t + term_g))
elif tail == "C":
cant_c -= 1
if window.endswith("A"):
cant_a += 1
term_a = compone[cant_a]
term_c = compone[cant_c]
lccsal.append(-(term_a + term_c + term_t + term_g))
elif window.endswith("T"):
cant_t += 1
term_c = compone[cant_c]
term_t = compone[cant_t]
lccsal.append(-(term_a + term_c + term_t + term_g))
elif window.endswith("G"):
cant_g += 1
term_c = compone[cant_c]
term_g = compone[cant_g]
lccsal.append(-(term_a + term_c + term_t + term_g))
elif tail == "T":
cant_t -= 1
if window.endswith("A"):
cant_a += 1
term_a = compone[cant_a]
term_t = compone[cant_t]
lccsal.append(-(term_a + term_c + term_t + term_g))
elif window.endswith("C"):
cant_c += 1
term_c = compone[cant_c]
term_t = compone[cant_t]
lccsal.append(-(term_a + term_c + term_t + term_g))
elif window.endswith("G"):
cant_g += 1
term_t = compone[cant_t]
term_g = compone[cant_g]
lccsal.append(-(term_a + term_c + term_t + term_g))
elif tail == "G":
cant_g -= 1
if window.endswith("A"):
cant_a += 1
term_a = compone[cant_a]
term_g = compone[cant_g]
lccsal.append(-(term_a + term_c + term_t + term_g))
elif window.endswith("C"):
cant_c += 1
term_c = compone[cant_c]
term_g = compone[cant_g]
lccsal.append(-(term_a + term_c + term_t + term_g))
elif window.endswith("T"):
cant_t += 1
term_t = compone[cant_t]
term_g = compone[cant_g]
lccsal.append(-(term_a + term_c + term_t + term_g))
tail = window[0]
return lccsal
def lcc_simp(seq):
"""Calculate Local Composition Complexity (LCC) for a sequence.
seq - an unambiguous DNA sequence (a string or Seq object)
Returns the Local Composition Complexity (LCC) value for the entire
sequence (as a float).
Reference:
Andrzej K Konopka (2005) Sequence Complexity and Composition
https://doi.org/10.1038/npg.els.0005260
"""
wsize = len(seq)
seq = seq.upper()
l4 = math.log(4)
# Check to avoid calculating the log of 0.
if "A" not in seq:
term_a = 0
else:
term_a = (seq.count("A") / wsize) * math.log(seq.count("A") / wsize) / l4
if "C" not in seq:
term_c = 0
else:
term_c = (seq.count("C") / wsize) * math.log(seq.count("C") / wsize) / l4
if "T" not in seq:
term_t = 0
else:
term_t = (seq.count("T") / wsize) * math.log(seq.count("T") / wsize) / l4
if "G" not in seq:
term_g = 0
else:
term_g = (seq.count("G") / wsize) * math.log(seq.count("G") / wsize) / l4
return -(term_a + term_c + term_t + term_g)
|