Spaces:
No application file
No application file
File size: 28,256 Bytes
b7731cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 |
# Copyright 2013 Saket Choudhary. All rights reserved.
#
# This file is part of the Biopython distribution and governed by your
# choice of the "Biopython License Agreement" or the "BSD 3-Clause License".
# Please see the LICENSE file that should have been included as part of this
# package.
"""Command line wrapper for bwa."""
from Bio.Application import _Option, _Argument, _Switch, AbstractCommandline
from Bio.Application import _StaticArgument
class BwaIndexCommandline(AbstractCommandline):
"""Command line wrapper for Burrows Wheeler Aligner (BWA) index.
Index database sequences in the FASTA format, equivalent to::
$ bwa index [-p prefix] [-a algoType] [-c] <in.db.fasta>
See http://bio-bwa.sourceforge.net/bwa.shtml for details.
Examples
--------
>>> from Bio.Sequencing.Applications import BwaIndexCommandline
>>> reference_genome = "/path/to/reference_genome.fasta"
>>> index_cmd = BwaIndexCommandline(infile=reference_genome, algorithm="bwtsw")
>>> print(index_cmd)
bwa index -a bwtsw /path/to/reference_genome.fasta
You would typically run the command using index_cmd() or via the
Python subprocess module, as described in the Biopython tutorial.
"""
def __init__(self, cmd="bwa", **kwargs):
"""Initialize the class."""
self.program_name = cmd
self.parameters = [
_StaticArgument("index"),
_Option(
["-a", "a", "algorithm"],
"""Algorithm for constructing BWT index.
Available options are:
- is: IS linear-time algorithm for constructing suffix array.
It requires 5.37N memory where N is the size of the database.
IS is moderately fast, but does not work with database larger
than 2GB. IS is the default algorithm due to its simplicity.
- bwtsw: Algorithm implemented in BWT-SW. This method works with the
whole human genome, but it does not work with database
smaller than 10MB and it is usually slower than IS.""",
checker_function=lambda x: x in ["is", "bwtsw"],
equate=False,
is_required=True,
),
_Option(
["-p", "p", "prefix"],
"Prefix of the output database [same as db filename]",
equate=False,
is_required=False,
),
_Argument(["infile"], "Input file name", filename=True, is_required=True),
_Switch(
["-c", "c"],
"Build color-space index. The input fasta should be in nucleotide space.",
),
]
AbstractCommandline.__init__(self, cmd, **kwargs)
class BwaAlignCommandline(AbstractCommandline):
"""Command line wrapper for Burrows Wheeler Aligner (BWA) aln.
Run a BWA alignment, equivalent to::
$ bwa aln [...] <in.db.fasta> <in.query.fq> > <out.sai>
See http://bio-bwa.sourceforge.net/bwa.shtml for details.
Examples
--------
>>> from Bio.Sequencing.Applications import BwaAlignCommandline
>>> reference_genome = "/path/to/reference_genome.fasta"
>>> read_file = "/path/to/read_1.fq"
>>> output_sai_file = "/path/to/read_1.sai"
>>> align_cmd = BwaAlignCommandline(reference=reference_genome, read_file=read_file)
>>> print(align_cmd)
bwa aln /path/to/reference_genome.fasta /path/to/read_1.fq
You would typically run the command line using align_cmd(stdout=output_sai_file)
or via the Python subprocess module, as described in the Biopython tutorial.
"""
def __init__(self, cmd="bwa", **kwargs):
"""Initialize the class."""
self.program_name = cmd
self.parameters = [
_StaticArgument("aln"),
_Argument(
["reference"], "Reference file name", filename=True, is_required=True
),
_Argument(["read_file"], "Read file name", filename=True, is_required=True),
_Option(
["-n", "n"],
"Maximum edit distance if the value is INT, or the fraction of missing alignments given 2% uniform base error rate if FLOAT. In the latter case, the maximum edit distance is automatically chosen for different read lengths. [0.04]",
checker_function=lambda x: isinstance(x, (int, float)),
equate=False,
),
_Option(
["-o", "o"],
"Maximum edit distance if the value is INT, or the fraction of missing alignments given 2% uniform base error rate if FLOAT. In the latter case, the maximum edit distance is automatically chosen for different read lengths. [0.04]",
checker_function=lambda x: isinstance(x, (int, float)),
equate=False,
),
_Option(
["-e", "e"],
"Maximum number of gap extensions, -1 for k-difference mode (disallowing long gaps) [-1]",
checker_function=lambda x: isinstance(x, int),
equate=False,
),
_Option(
["-d", "d"],
"Disallow a long deletion within INT bp towards the 3-end [16]",
checker_function=lambda x: isinstance(x, int),
equate=False,
),
_Option(
["-i", "i"],
"Disallow an indel within INT bp towards the ends [5]",
checker_function=lambda x: isinstance(x, int),
equate=False,
),
_Option(
["-l", "l"],
"""Take the first INT subsequence as seed.
If INT is larger than the query sequence, seeding will be disabled.
For long reads, this option is typically ranged from 25 to 35 for
-k 2. [inf]""",
checker_function=lambda x: isinstance(x, int),
equate=False,
),
_Option(
["-k", "k"],
"Maximum edit distance in the seed [2]",
checker_function=lambda x: isinstance(x, int),
equate=False,
),
_Option(
["-t", "t"],
"Number of threads (multi-threading mode) [1]",
checker_function=lambda x: isinstance(x, int),
equate=False,
),
_Option(
["-M", "M"],
"Mismatch penalty. BWA will not search for suboptimal hits with a score lower than (bestScore-misMsc). [3]",
checker_function=lambda x: isinstance(x, int),
equate=False,
),
_Option(
["-O", "O"],
"Gap open penalty [11]",
checker_function=lambda x: isinstance(x, int),
equate=False,
),
_Option(
["-E", "E"],
"Gap extension penalty [4]",
checker_function=lambda x: isinstance(x, int),
equate=False,
),
_Option(
["-R", "R"],
"""Proceed with suboptimal alignments if there are no more than INT equally best hits.
This option only affects paired-end mapping. Increasing this threshold helps
to improve the pairing accuracy at the cost of speed, especially for short
reads (~32bp).""",
checker_function=lambda x: isinstance(x, int),
equate=False,
),
_Option(
["-q", "q"],
r"""Parameter for read trimming [0].
BWA trims a read down to argmax_x{\sum_{i=x+1}^l(INT-q_i)} if q_l<INT
where l is the original read length.""",
checker_function=lambda x: isinstance(x, int),
equate=False,
),
_Option(
["-B", "B"],
"Length of barcode starting from the 5-end. When INT is positive, the barcode of each read will be trimmed before mapping and will be written at the BC SAM tag. For paired-end reads, the barcode from both ends are concatenated. [0]",
checker_function=lambda x: isinstance(x, int),
equate=False,
),
_Switch(
["-c", "c"],
"Reverse query but not complement it, which is required for alignment in the color space.",
),
_Switch(
["-N", "N"],
"Disable iterative search. All hits with no more than maxDiff differences will be found. This mode is much slower than the default.",
),
_Switch(
["-I", "I"],
"The input is in the Illumina 1.3+ read format (quality equals ASCII-64).",
),
_Switch(
["-b", "b"], "Specify the input read sequence file is the BAM format"
),
_Switch(
["-b1", "b1"],
"When -b is specified, only use the first read in a read pair in mapping (skip single-end reads and the second reads).",
),
_Switch(
["-b2", "b2"],
"When -b is specified, only use the second read in a read pair in mapping.",
),
]
AbstractCommandline.__init__(self, cmd, **kwargs)
class BwaSamseCommandline(AbstractCommandline):
"""Command line wrapper for Burrows Wheeler Aligner (BWA) samse.
Generate alignments in the SAM format given single-end reads.
Equvialent to::
$ bwa samse [-n maxOcc] <in.db.fasta> <in.sai> <in.fq> > <out.sam>
See http://bio-bwa.sourceforge.net/bwa.shtml for details.
Examples
--------
>>> from Bio.Sequencing.Applications import BwaSamseCommandline
>>> reference_genome = "/path/to/reference_genome.fasta"
>>> read_file = "/path/to/read_1.fq"
>>> sai_file = "/path/to/read_1.sai"
>>> output_sam_file = "/path/to/read_1.sam"
>>> samse_cmd = BwaSamseCommandline(reference=reference_genome,
... read_file=read_file, sai_file=sai_file)
>>> print(samse_cmd)
bwa samse /path/to/reference_genome.fasta /path/to/read_1.sai /path/to/read_1.fq
You would typically run the command line using samse_cmd(stdout=output_sam_file)
or via the Python subprocess module, as described in the Biopython tutorial.
"""
def __init__(self, cmd="bwa", **kwargs):
"""Initialize the class."""
self.program_name = cmd
self.parameters = [
_StaticArgument("samse"),
_Argument(
["reference"], "Reference file name", filename=True, is_required=True
),
_Argument(["sai_file"], "Sai file name", filename=True, is_required=True),
_Argument(
["read_file"], "Read file name", filename=True, is_required=True
),
_Option(
["-n", "n"],
"""Maximum number of alignments to output in the XA tag for reads paired properly.
If a read has more than INT hits, the XA tag will not be written. [3]""",
checker_function=lambda x: isinstance(x, int),
equate=False,
),
_Option(
["-r", "r"],
"Specify the read group in a format like '@RG\tID:foo\tSM:bar'. [null]",
checker_function=lambda x: isinstance(x, int),
equate=False,
),
]
AbstractCommandline.__init__(self, cmd, **kwargs)
class BwaSampeCommandline(AbstractCommandline):
r"""Command line wrapper for Burrows Wheeler Aligner (BWA) sampe.
Generate alignments in the SAM format given paired-end reads.
Equivalent to::
$ bwa sampe [...] <in.db.fasta> <in1.sai> <in2.sai> <in1.fq> <in2.fq> > <out.sam>
See http://bio-bwa.sourceforge.net/bwa.shtml for details.
Examples
--------
>>> from Bio.Sequencing.Applications import BwaSampeCommandline
>>> reference_genome = "/path/to/reference_genome.fasta"
>>> read_file1 = "/path/to/read_1.fq"
>>> read_file2 = "/path/to/read_2.fq"
>>> sai_file1 = "/path/to/read_1.sai"
>>> sai_file2 = "/path/to/read_2.sai"
>>> output_sam_file = "/path/to/output.sam"
>>> read_group = r"@RG\tID:foo\tSM:bar" # BWA will turn backslash-t into tab
>>> sampe_cmd = BwaSampeCommandline(reference=reference_genome,
... sai_file1=sai_file1, sai_file2=sai_file2,
... read_file1=read_file1, read_file2=read_file2,
... r=read_group)
>>> print(sampe_cmd)
bwa sampe /path/to/reference_genome.fasta /path/to/read_1.sai /path/to/read_2.sai /path/to/read_1.fq /path/to/read_2.fq -r @RG\tID:foo\tSM:bar
You would typically run the command line using sampe_cmd(stdout=output_sam_file)
or via the Python subprocess module, as described in the Biopython tutorial.
"""
# TODO - Should the read group have a raw tab in it, or \t?
def __init__(self, cmd="bwa", **kwargs):
"""Initialize the class."""
self.program_name = cmd
self.parameters = [
_StaticArgument("sampe"),
_Argument(
["reference"], "Reference file name", filename=True, is_required=True
),
_Argument(["sai_file1"], "Sai file 1", filename=True, is_required=True),
_Argument(["sai_file2"], "Sai file 2", filename=True, is_required=True),
_Argument(["read_file1"], "Read file 1", filename=True, is_required=True),
_Argument(["read_file2"], "Read file 2", filename=True, is_required=True),
_Option(
["-a", "a"],
"""Maximum insert size for a read pair to be considered being mapped properly [500].
Since 0.4.5, this option is only used when there are not enough
good alignments to infer the distribution of insert sizes.""",
checker_function=lambda x: isinstance(x, int),
equate=False,
),
_Option(
["-o", "o"],
"""Maximum occurrences of a read for pairing [100000].
A read with more occurrences will be treated as a single-end read.
Reducing this parameter helps faster pairing.""",
checker_function=lambda x: isinstance(x, int),
equate=False,
),
_Option(
["-n", "n"],
"""Maximum number of alignments to output in the XA tag for reads paired properly [3].
If a read has more than INT hits, the XA tag will not be written.""",
checker_function=lambda x: isinstance(x, int),
equate=False,
),
_Option(
["-N", "N"],
"""Maximum number of alignments to output in the XA tag for disconcordant read pairs (excluding singletons) [10].
If a read has more than INT hits, the XA tag will not be written.""",
checker_function=lambda x: isinstance(x, int),
equate=False,
),
_Option(
["-r", "r"],
"Specify the read group in a format like '@RG\tID:foo\tSM:bar'. [null]",
checker_function=lambda x: isinstance(x, str),
equate=False,
),
]
AbstractCommandline.__init__(self, cmd, **kwargs)
class BwaBwaswCommandline(AbstractCommandline):
"""Command line wrapper for Burrows Wheeler Aligner (BWA) bwasw.
Align query sequences from FASTQ files. Equivalent to::
$ bwa bwasw [...] <in.db.fasta> <in.fq>
See http://bio-bwa.sourceforge.net/bwa.shtml for details.
Examples
--------
>>> from Bio.Sequencing.Applications import BwaBwaswCommandline
>>> reference_genome = "/path/to/reference_genome.fasta"
>>> read_file = "/path/to/read_1.fq"
>>> bwasw_cmd = BwaBwaswCommandline(reference=reference_genome, read_file=read_file)
>>> print(bwasw_cmd)
bwa bwasw /path/to/reference_genome.fasta /path/to/read_1.fq
You would typically run the command line using bwasw_cmd() or via the
Python subprocess module, as described in the Biopython tutorial.
"""
def __init__(self, cmd="bwa", **kwargs):
"""Initialize the class."""
self.program_name = cmd
self.parameters = [
_StaticArgument("bwasw"),
_Argument(
["reference"], "Reference file name", filename=True, is_required=True
),
_Argument(["read_file"], "Read file", filename=True, is_required=True),
_Argument(["mate_file"], "Mate file", filename=True, is_required=False),
_Option(
["-a", "a"],
"Score of a match [1]",
checker_function=lambda x: isinstance(x, int),
equate=False,
),
_Option(
["-b", "b"],
"Mismatch penalty [3]",
checker_function=lambda x: isinstance(x, int),
equate=False,
),
_Option(
["-q", "q"],
"Gap open penalty [5]",
checker_function=lambda x: isinstance(x, int),
equate=False,
),
_Option(
["-r", "r"],
"Gap extension penalty. The penalty for a contiguous gap of size k is q+k*r. [2]",
checker_function=lambda x: isinstance(x, int),
equate=False,
),
_Option(
["-t", "t"],
"Number of threads in the multi-threading mode [1]",
checker_function=lambda x: isinstance(x, int),
equate=False,
),
_Option(
["-w", "w"],
"Band width in the banded alignment [33]",
checker_function=lambda x: isinstance(x, int),
equate=False,
),
_Option(
["-T", "T"],
"Minimum score threshold divided by a [37]",
checker_function=lambda x: isinstance(x, int),
equate=False,
),
_Option(
["-c", "c"],
"""Coefficient for threshold adjustment according to query length [5.5].
Given an l-long query, the threshold for a hit to be retained is
a*max{T,c*log(l)}.""",
checker_function=lambda x: isinstance(x, float),
equate=False,
),
_Option(
["-z", "z"],
"Z-best heuristics. Higher -z increases accuracy at the cost of speed. [1]",
checker_function=lambda x: isinstance(x, int),
equate=False,
),
_Option(
["-s", "s"],
"""Maximum SA interval size for initiating a seed [3].
Higher -s increases accuracy at the cost of speed.""",
checker_function=lambda x: isinstance(x, int),
equate=False,
),
_Option(
["-N", "N"],
"Minimum number of seeds supporting the resultant alignment to skip reverse alignment. [5]",
checker_function=lambda x: isinstance(x, int),
equate=False,
),
]
AbstractCommandline.__init__(self, cmd, **kwargs)
class BwaMemCommandline(AbstractCommandline):
"""Command line wrapper for Burrows Wheeler Aligner (BWA) mem.
Run a BWA-MEM alignment, with single- or paired-end reads, equivalent to::
$ bwa mem [...] <in.db.fasta> <in1.fq> <in2.fq> > <out.sam>
See http://bio-bwa.sourceforge.net/bwa.shtml for details.
Examples
--------
>>> from Bio.Sequencing.Applications import BwaMemCommandline
>>> reference_genome = "/path/to/reference_genome.fasta"
>>> read_file = "/path/to/read_1.fq"
>>> output_sam_file = "/path/to/output.sam"
>>> align_cmd = BwaMemCommandline(reference=reference_genome, read_file1=read_file)
>>> print(align_cmd)
bwa mem /path/to/reference_genome.fasta /path/to/read_1.fq
You would typically run the command line using align_cmd(stdout=output_sam_file)
or via the Python subprocess module, as described in the Biopython tutorial.
"""
def __init__(self, cmd="bwa", **kwargs):
"""Initialize the class."""
self.program_name = cmd
self.parameters = [
_StaticArgument("mem"),
_Argument(
["reference"], "Reference file name", filename=True, is_required=True
),
_Argument(
["read_file1"], "Read 1 file name", filename=True, is_required=True
),
_Argument(
["read_file2"], "Read 2 file name", filename=True, is_required=False
),
_Option(
["-t", "t"],
"Number of threads [1]",
checker_function=lambda x: isinstance(x, int),
equate=False,
),
_Option(
["-k", "k"],
"Minimum seed length. Matches shorter than INT will be missed. The alignment speed is usually insensitive to this value unless it significantly deviates 20. [19]",
checker_function=lambda x: isinstance(x, int),
equate=False,
),
_Option(
["-w", "w"],
"Band width. Essentially, gaps longer than INT will not be found. Note that the maximum gap length is also affected by the scoring matrix and the hit length, not solely determined by this option. [100]",
checker_function=lambda x: isinstance(x, int),
equate=False,
),
_Option(
["-d", "d"],
r"Off-diagonal X-dropoff (Z-dropoff). Stop extension when the difference between the best and the current extension score is above \|i-j\|*A+INT, where i and j are the current positions of the query and reference, respectively, and A is the matching score. Z-dropoff is similar to BLAST's X-dropoff except that it doesn't penalize gaps in one of the sequences in the alignment. Z-dropoff not only avoids unnecessary extension, but also reduces poor alignments inside a long good alignment. [100]",
checker_function=lambda x: isinstance(x, int),
equate=False,
),
_Option(
["-r", "r"],
"Trigger re-seeding for a MEM longer than minSeedLen*FLOAT. This is a key heuristic parameter for tuning the performance. Larger value yields fewer seeds, which leads to faster alignment speed but lower accuracy. [1.5]",
checker_function=lambda x: isinstance(x, (int, float)),
equate=False,
),
_Option(
["-c", "c"],
"Discard a MEM if it has more than INT occurrence in the genome. This is an insensitive parameter. [10000]",
checker_function=lambda x: isinstance(x, int),
equate=False,
),
_Option(
["-A", "A"],
"Matching score. [1]",
checker_function=lambda x: isinstance(x, int),
equate=False,
),
_Option(
["-B", "B"],
"Mismatch penalty. The sequence error rate is approximately: {.75 * exp[-log(4) * B/A]}. [4]",
checker_function=lambda x: isinstance(x, int),
equate=False,
),
_Option(
["-O", "O"],
"Gap open penalty. [6]",
checker_function=lambda x: isinstance(x, int),
equate=False,
),
_Option(
["-E", "E"],
"Gap extension penalty. A gap of length k costs O + k*E (i.e. -O is for opening a zero-length gap). [1]",
checker_function=lambda x: isinstance(x, int),
equate=False,
),
_Option(
["-L", "L"],
"Clipping penalty. When performing SW extension, BWA-MEM keeps track of the best score reaching the end of query. If this score is larger than the best SW score minus the clipping penalty, clipping will not be applied. Note that in this case, the SAM AS tag reports the best SW score; clipping penalty is not deducted. [5]",
checker_function=lambda x: isinstance(x, int),
equate=False,
),
_Option(
["-U", "U"],
"Penalty for an unpaired read pair. BWA-MEM scores an unpaired read pair as scoreRead1+scoreRead2-INT and scores a paired as scoreRead1+scoreRead2-insertPenalty. It compares these two scores to determine whether we should force pairing. [9] ",
checker_function=lambda x: isinstance(x, int),
equate=False,
),
_Option(
["-R", "R"],
"Complete read group header line. 't' can be used in STR and will be converted to a TAB in the output SAM. The read group ID will be attached to every read in the output. An example is '@RG\tID:foo\tSM:bar'. [null]",
checker_function=lambda x: isinstance(x, str),
equate=False,
),
_Option(
["-T", "T"],
"Don't output alignment with score lower than INT. This option only affects output. [30]",
checker_function=lambda x: isinstance(x, int),
equate=False,
),
_Option(
["-v", "v"],
"Control the verbose level of the output. This option has not been fully supported throughout BWA. Ideally, a value 0 for disabling all the output to stderr; 1 for outputting errors only; 2 for warnings and errors; 3 for all normal messages; 4 or higher for debugging. When this option takes value 4, the output is not SAM. [3]",
checker_function=lambda x: isinstance(x, int),
equate=False,
),
_Switch(
["-P", "P"],
"In the paired-end mode, perform SW to rescue missing hits only but do not try to find hits that fit a proper pair.",
),
_Switch(
["-p", "p"],
"Assume the first input query file is interleaved paired-end FASTA/Q. See the command description for details.",
),
_Switch(
["-a", "a"],
"Output all found alignments for single-end or unpaired paired-end reads. These alignments will be flagged as secondary alignments.",
),
_Switch(
["-C", "C"],
"Append FASTA/Q comment to SAM output. This option can be used to transfer read meta information (e.g. barcode) to the SAM output. Note that the FASTA/Q comment (the string after a space in the header line) must conform the SAM spec (e.g. BC:Z:CGTAC). Malformated comments lead to incorrect SAM output.",
),
_Switch(
["-H", "H"],
"Use hard clipping 'H' in the SAM output. This option may dramatically reduce the redundancy of output when mapping long contig or BAC sequences.",
),
_Switch(
["-M", "M"],
"Mark shorter split hits as secondary (for Picard compatibility).",
),
]
AbstractCommandline.__init__(self, cmd, **kwargs)
if __name__ == "__main__":
from Bio._utils import run_doctest
run_doctest()
|